GRNet:基于图推理的深度卷积神经网络语义分割

Yang Wu, A. Jiang, Yibin Tang, H. Kwan
{"title":"GRNet:基于图推理的深度卷积神经网络语义分割","authors":"Yang Wu, A. Jiang, Yibin Tang, H. Kwan","doi":"10.1109/VCIP49819.2020.9301851","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel deep-network architecture for semantic segmentation. In contrast to previous work that widely uses dilated convolutions, we employ the original ResNet as the backbone, and a multi-scale feature fusion module (MFFM) is introduced to extract long-range contextual information and upsample feature maps. Then, a graph reasoning module (GRM) based on graph-convolutional network (GCN) is developed to aggregate semantic information. Our graph reasoning network (GRNet) extracts global contexts of input features by modeling graph reasoning in a single framework. Experimental results demonstrate that our approach provides substantial benefits over a strong baseline and achieves superior segmentation performance on two benchmark datasets.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GRNet: Deep Convolutional Neural Networks based on Graph Reasoning for Semantic Segmentation\",\"authors\":\"Yang Wu, A. Jiang, Yibin Tang, H. Kwan\",\"doi\":\"10.1109/VCIP49819.2020.9301851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a novel deep-network architecture for semantic segmentation. In contrast to previous work that widely uses dilated convolutions, we employ the original ResNet as the backbone, and a multi-scale feature fusion module (MFFM) is introduced to extract long-range contextual information and upsample feature maps. Then, a graph reasoning module (GRM) based on graph-convolutional network (GCN) is developed to aggregate semantic information. Our graph reasoning network (GRNet) extracts global contexts of input features by modeling graph reasoning in a single framework. Experimental results demonstrate that our approach provides substantial benefits over a strong baseline and achieves superior segmentation performance on two benchmark datasets.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们开发了一种新的用于语义分割的深度网络架构。与以往广泛使用扩张卷积的研究不同,我们采用原始的ResNet作为主干,并引入多尺度特征融合模块(MFFM)来提取远程上下文信息和上样本特征映射。然后,开发了基于图卷积网络(GCN)的图推理模块(GRM)来实现语义信息的聚合。我们的图推理网络(GRNet)通过在单一框架中建模图推理来提取输入特征的全局上下文。实验结果表明,我们的方法在强大的基线上提供了实质性的好处,并在两个基准数据集上实现了卓越的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GRNet: Deep Convolutional Neural Networks based on Graph Reasoning for Semantic Segmentation
In this paper, we develop a novel deep-network architecture for semantic segmentation. In contrast to previous work that widely uses dilated convolutions, we employ the original ResNet as the backbone, and a multi-scale feature fusion module (MFFM) is introduced to extract long-range contextual information and upsample feature maps. Then, a graph reasoning module (GRM) based on graph-convolutional network (GCN) is developed to aggregate semantic information. Our graph reasoning network (GRNet) extracts global contexts of input features by modeling graph reasoning in a single framework. Experimental results demonstrate that our approach provides substantial benefits over a strong baseline and achieves superior segmentation performance on two benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信