{"title":"边流中的大型非常密集子图","authors":"Claire Mathieu, Michel de Rougemont","doi":"10.1145/3412815.3416884","DOIUrl":null,"url":null,"abstract":"We study the detection and the reconstruction of a large very dense subgraph in a social graph with n nodes and m edges given as a stream of edges, when the graph follows a power law degree distribution, in the regime when $m=O(n. łog n)$. A subgraph is very dense if its edge density is comparable to a clique. We uniformly sample the edges with a Reservoir of size $k=O(\\sqrtn.łog n)$. The detection algorithm of a large very dense subgraph checks whether the Reservoir has a giant component. We show that if the graph contains a very dense subgraph of size $Ømega(\\sqrtn )$, then the detection algorithm is almost surely correct. On the other hand, a random graph that follows a power law degree distribution almost surely has no large very dense subgraph, and the detection algorithm is almost surely correct. We define a new model of random graphs which follow a power law degree distribution and have large very dense subgraphs. We then show that on this class of random graphs we can reconstruct a good approximation of the very dense subgraph with high probability. We generalize these results to dynamic graphs defined by sliding windows in a stream of edges.","PeriodicalId":176130,"journal":{"name":"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Large Very Dense Subgraphs in a Stream of Edges\",\"authors\":\"Claire Mathieu, Michel de Rougemont\",\"doi\":\"10.1145/3412815.3416884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the detection and the reconstruction of a large very dense subgraph in a social graph with n nodes and m edges given as a stream of edges, when the graph follows a power law degree distribution, in the regime when $m=O(n. łog n)$. A subgraph is very dense if its edge density is comparable to a clique. We uniformly sample the edges with a Reservoir of size $k=O(\\\\sqrtn.łog n)$. The detection algorithm of a large very dense subgraph checks whether the Reservoir has a giant component. We show that if the graph contains a very dense subgraph of size $Ømega(\\\\sqrtn )$, then the detection algorithm is almost surely correct. On the other hand, a random graph that follows a power law degree distribution almost surely has no large very dense subgraph, and the detection algorithm is almost surely correct. We define a new model of random graphs which follow a power law degree distribution and have large very dense subgraphs. We then show that on this class of random graphs we can reconstruct a good approximation of the very dense subgraph with high probability. We generalize these results to dynamic graphs defined by sliding windows in a stream of edges.\",\"PeriodicalId\":176130,\"journal\":{\"name\":\"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3412815.3416884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412815.3416884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the detection and the reconstruction of a large very dense subgraph in a social graph with n nodes and m edges given as a stream of edges, when the graph follows a power law degree distribution, in the regime when $m=O(n. łog n)$. A subgraph is very dense if its edge density is comparable to a clique. We uniformly sample the edges with a Reservoir of size $k=O(\sqrtn.łog n)$. The detection algorithm of a large very dense subgraph checks whether the Reservoir has a giant component. We show that if the graph contains a very dense subgraph of size $Ømega(\sqrtn )$, then the detection algorithm is almost surely correct. On the other hand, a random graph that follows a power law degree distribution almost surely has no large very dense subgraph, and the detection algorithm is almost surely correct. We define a new model of random graphs which follow a power law degree distribution and have large very dense subgraphs. We then show that on this class of random graphs we can reconstruct a good approximation of the very dense subgraph with high probability. We generalize these results to dynamic graphs defined by sliding windows in a stream of edges.