{"title":"使用基于遗传算法的工作量证明的高效比特币挖掘","authors":"S. Mehta, M. Goyal, D. Saini","doi":"10.4018/ijfsa.296593","DOIUrl":null,"url":null,"abstract":"Blockchain requires to validate the block with confirmed transactions from the unconfirmed pool of transactions through Miners. Miners pick up the transactions from the pool of unconfirmed transactions approximately more than 2000 and solve the algorithmic puzzle i.e. also known as proof of work within the limited period of time. To maximize the throughput per second requires optimization of the time period to solve the algorithm puzzle for validating the block. Conventionally, for unconfirmed transactions, miners solve the proof of work using brute force algorithms which consume a lot of electrical energy due to the huge number of computations. To optimize the time for block chain mining, this paper proposes a Genetic algorithm based block mining (GAMB) approach to fetch the transactions from the unconfirmed pool of transactions in order to validate the block within a limited period of time. It is a population based algorithm which attempts to solve the proof of work for multiple transactions in parallel. The performance of GAMB is evaluated for transactions from 1000 to 5000.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Bitcoin Mining Using Genetic Algorithm-Based Proof of Work\",\"authors\":\"S. Mehta, M. Goyal, D. Saini\",\"doi\":\"10.4018/ijfsa.296593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blockchain requires to validate the block with confirmed transactions from the unconfirmed pool of transactions through Miners. Miners pick up the transactions from the pool of unconfirmed transactions approximately more than 2000 and solve the algorithmic puzzle i.e. also known as proof of work within the limited period of time. To maximize the throughput per second requires optimization of the time period to solve the algorithm puzzle for validating the block. Conventionally, for unconfirmed transactions, miners solve the proof of work using brute force algorithms which consume a lot of electrical energy due to the huge number of computations. To optimize the time for block chain mining, this paper proposes a Genetic algorithm based block mining (GAMB) approach to fetch the transactions from the unconfirmed pool of transactions in order to validate the block within a limited period of time. It is a population based algorithm which attempts to solve the proof of work for multiple transactions in parallel. The performance of GAMB is evaluated for transactions from 1000 to 5000.\",\"PeriodicalId\":233724,\"journal\":{\"name\":\"Int. J. Fuzzy Syst. Appl.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Syst. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.296593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.296593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Bitcoin Mining Using Genetic Algorithm-Based Proof of Work
Blockchain requires to validate the block with confirmed transactions from the unconfirmed pool of transactions through Miners. Miners pick up the transactions from the pool of unconfirmed transactions approximately more than 2000 and solve the algorithmic puzzle i.e. also known as proof of work within the limited period of time. To maximize the throughput per second requires optimization of the time period to solve the algorithm puzzle for validating the block. Conventionally, for unconfirmed transactions, miners solve the proof of work using brute force algorithms which consume a lot of electrical energy due to the huge number of computations. To optimize the time for block chain mining, this paper proposes a Genetic algorithm based block mining (GAMB) approach to fetch the transactions from the unconfirmed pool of transactions in order to validate the block within a limited period of time. It is a population based algorithm which attempts to solve the proof of work for multiple transactions in parallel. The performance of GAMB is evaluated for transactions from 1000 to 5000.