基于小波的线性测量递归重构算法

O. Arikan
{"title":"基于小波的线性测量递归重构算法","authors":"O. Arikan","doi":"10.1109/TFSA.1996.546679","DOIUrl":null,"url":null,"abstract":"A recursive algorithm is proposed to obtain an efficient regularized least squares solution to large linear system of equations which arises in many physical measurement models. The algorithm recursively updates the solution in an increasingly larger dimensional subspace whose basis vectors are chosen as a subset of a complete wavelet basis. Robust criterions on how to chose the basis vectors at each iteration, and when to stop the iterations are given.","PeriodicalId":415923,"journal":{"name":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wavelet based recursive reconstruction algorithm for linear measurements\",\"authors\":\"O. Arikan\",\"doi\":\"10.1109/TFSA.1996.546679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recursive algorithm is proposed to obtain an efficient regularized least squares solution to large linear system of equations which arises in many physical measurement models. The algorithm recursively updates the solution in an increasingly larger dimensional subspace whose basis vectors are chosen as a subset of a complete wavelet basis. Robust criterions on how to chose the basis vectors at each iteration, and when to stop the iterations are given.\",\"PeriodicalId\":415923,\"journal\":{\"name\":\"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TFSA.1996.546679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1996.546679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对许多物理测量模型中出现的大型线性方程组,提出了一种有效的正则化最小二乘解的递推算法。该算法在一个越来越大的子空间中递归地更新解,该子空间的基向量是一个完整小波基的子集。给出了每次迭代时如何选择基向量以及何时停止迭代的鲁棒准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A wavelet based recursive reconstruction algorithm for linear measurements
A recursive algorithm is proposed to obtain an efficient regularized least squares solution to large linear system of equations which arises in many physical measurement models. The algorithm recursively updates the solution in an increasingly larger dimensional subspace whose basis vectors are chosen as a subset of a complete wavelet basis. Robust criterions on how to chose the basis vectors at each iteration, and when to stop the iterations are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信