基于影响图和贝叶斯滤波的Ego-Lane在线可靠性评估与可靠性感知融合

T. Nguyen, J. Spehr, Jian Xiong, M. Baum, S. Zug, R. Kruse
{"title":"基于影响图和贝叶斯滤波的Ego-Lane在线可靠性评估与可靠性感知融合","authors":"T. Nguyen, J. Spehr, Jian Xiong, M. Baum, S. Zug, R. Kruse","doi":"10.1109/MFI.2017.8170400","DOIUrl":null,"url":null,"abstract":"Within the context of road estimation, the present paper addresses the problem of the fusion of several sources with different reliabilities. Thereby, reliability represents a higher-level uncertainty. This problem arises in automated driving and ADAS due to changing environmental conditions, e.g., road type or visibility of lane markings. Thus, we present an online sensor reliability assessment and reliability-aware fusion to cope with this challenge. First, we apply a boosting algorithm to select the highly discriminant features among the extracted information. Using them we apply different classifiers to learn the reliabilities, such as Bayesian Network and Random Forest classifiers. To stabilize the estimated reliabilities over time, we deploy approaches such as Dempster-Shafer evidence theory and Influence Diagram combined with a Bayes Filter. Using a big collection of real data recordings, the experimental results support our proposed approach.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Online reliability assessment and reliability-aware fusion for Ego-Lane detection using influence diagram and Bayes filter\",\"authors\":\"T. Nguyen, J. Spehr, Jian Xiong, M. Baum, S. Zug, R. Kruse\",\"doi\":\"10.1109/MFI.2017.8170400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the context of road estimation, the present paper addresses the problem of the fusion of several sources with different reliabilities. Thereby, reliability represents a higher-level uncertainty. This problem arises in automated driving and ADAS due to changing environmental conditions, e.g., road type or visibility of lane markings. Thus, we present an online sensor reliability assessment and reliability-aware fusion to cope with this challenge. First, we apply a boosting algorithm to select the highly discriminant features among the extracted information. Using them we apply different classifiers to learn the reliabilities, such as Bayesian Network and Random Forest classifiers. To stabilize the estimated reliabilities over time, we deploy approaches such as Dempster-Shafer evidence theory and Influence Diagram combined with a Bayes Filter. Using a big collection of real data recordings, the experimental results support our proposed approach.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"362 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在道路估计的背景下,本文解决了具有不同可靠度的多个源的融合问题。因此,可靠性代表了更高层次的不确定性。在自动驾驶和ADAS中,由于环境条件的变化,例如道路类型或车道标记的可见性,会出现这个问题。因此,我们提出了一种在线传感器可靠性评估和可靠性感知融合来应对这一挑战。首先,我们使用增强算法从提取的信息中选择高判别性的特征。在此基础上,我们采用贝叶斯网络和随机森林分类器等不同的分类器来学习可靠性。为了随着时间的推移稳定估计的可靠性,我们部署了诸如Dempster-Shafer证据理论和影响图与贝叶斯滤波器相结合的方法。使用大量的真实数据记录,实验结果支持我们提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online reliability assessment and reliability-aware fusion for Ego-Lane detection using influence diagram and Bayes filter
Within the context of road estimation, the present paper addresses the problem of the fusion of several sources with different reliabilities. Thereby, reliability represents a higher-level uncertainty. This problem arises in automated driving and ADAS due to changing environmental conditions, e.g., road type or visibility of lane markings. Thus, we present an online sensor reliability assessment and reliability-aware fusion to cope with this challenge. First, we apply a boosting algorithm to select the highly discriminant features among the extracted information. Using them we apply different classifiers to learn the reliabilities, such as Bayesian Network and Random Forest classifiers. To stabilize the estimated reliabilities over time, we deploy approaches such as Dempster-Shafer evidence theory and Influence Diagram combined with a Bayes Filter. Using a big collection of real data recordings, the experimental results support our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信