面向神经信息检索的查询性能预测:挑战与机遇

G. Faggioli, Thibault Formal, Simon Lupart, S. Marchesin, S. Clinchant, N. Ferro, Benjamin Piwowarski
{"title":"面向神经信息检索的查询性能预测:挑战与机遇","authors":"G. Faggioli, Thibault Formal, Simon Lupart, S. Marchesin, S. Clinchant, N. Ferro, Benjamin Piwowarski","doi":"10.1145/3578337.3605142","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel framework to devise features that can be used by Query Performance Prediction (QPP) models for Neural Information Retrieval (NIR). Using the proposed framework as a periodic table of QPP components, practitioners can devise new predictors better suited for NIR. Through the framework, we detail what challenges and opportunities arise for QPPs at different stages of the NIR pipeline. We show the potential of the proposed framework by using it to devise two types of novel predictors. The first one, named MEMory-based QPP (MEM-QPP), exploits the similarity between test and train queries to measure how much a NIR system can memorize. The second adapts traditional QPPs into NIR-oriented ones by computing the query-corpus semantic similarity. By exploiting the inherent nature of NIR systems, the proposed predictors overcome, under various setups, the current State of the Art, highlighting -- at the same time -- the versatility of the framework in describing different types of QPPs.","PeriodicalId":415621,"journal":{"name":"Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Query Performance Prediction for Neural Information Retrieval: Challenges and Opportunities\",\"authors\":\"G. Faggioli, Thibault Formal, Simon Lupart, S. Marchesin, S. Clinchant, N. Ferro, Benjamin Piwowarski\",\"doi\":\"10.1145/3578337.3605142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a novel framework to devise features that can be used by Query Performance Prediction (QPP) models for Neural Information Retrieval (NIR). Using the proposed framework as a periodic table of QPP components, practitioners can devise new predictors better suited for NIR. Through the framework, we detail what challenges and opportunities arise for QPPs at different stages of the NIR pipeline. We show the potential of the proposed framework by using it to devise two types of novel predictors. The first one, named MEMory-based QPP (MEM-QPP), exploits the similarity between test and train queries to measure how much a NIR system can memorize. The second adapts traditional QPPs into NIR-oriented ones by computing the query-corpus semantic similarity. By exploiting the inherent nature of NIR systems, the proposed predictors overcome, under various setups, the current State of the Art, highlighting -- at the same time -- the versatility of the framework in describing different types of QPPs.\",\"PeriodicalId\":415621,\"journal\":{\"name\":\"Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3578337.3605142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3578337.3605142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一个新的框架来设计可用于神经信息检索(NIR)的查询性能预测(QPP)模型的特征。使用提出的框架作为QPP组件的周期表,从业者可以设计更适合NIR的新预测器。通过该框架,我们详细介绍了qpp在新工业革命管道的不同阶段所面临的挑战和机遇。我们通过使用所提出的框架来设计两种类型的新预测器来展示其潜力。第一个是基于记忆的QPP (memo -QPP),它利用测试查询和训练查询之间的相似性来衡量近红外系统可以记忆多少。第二部分通过计算查询语料库的语义相似度,将传统的qpp改进为面向nir的qpp。通过利用近红外系统的固有特性,所提出的预测器在各种设置下克服了当前的最新技术,同时突出了该框架在描述不同类型qpp方面的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Query Performance Prediction for Neural Information Retrieval: Challenges and Opportunities
In this work, we propose a novel framework to devise features that can be used by Query Performance Prediction (QPP) models for Neural Information Retrieval (NIR). Using the proposed framework as a periodic table of QPP components, practitioners can devise new predictors better suited for NIR. Through the framework, we detail what challenges and opportunities arise for QPPs at different stages of the NIR pipeline. We show the potential of the proposed framework by using it to devise two types of novel predictors. The first one, named MEMory-based QPP (MEM-QPP), exploits the similarity between test and train queries to measure how much a NIR system can memorize. The second adapts traditional QPPs into NIR-oriented ones by computing the query-corpus semantic similarity. By exploiting the inherent nature of NIR systems, the proposed predictors overcome, under various setups, the current State of the Art, highlighting -- at the same time -- the versatility of the framework in describing different types of QPPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信