具有时滞的不稳定一阶过程的整定公式

M. Azamfar, A. Amiri, Danial Aghapour Olilo
{"title":"具有时滞的不稳定一阶过程的整定公式","authors":"M. Azamfar, A. Amiri, Danial Aghapour Olilo","doi":"10.1109/ICROM.2014.6991023","DOIUrl":null,"url":null,"abstract":"This paper presents a new controller design method for first order unstable processes with time delay. First, the conditions that guarantee internal stability of closed-loop system are investigated, then analytic rules for the proposed controllers tuning are developed. The tuning rules are simple and result in good closed-loop behavior. Examples are given to illustrate the simplicity and superiority of the proposed method compared with some existing ones.","PeriodicalId":177375,"journal":{"name":"2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of the tuning formula for unstable first order processes with time delay\",\"authors\":\"M. Azamfar, A. Amiri, Danial Aghapour Olilo\",\"doi\":\"10.1109/ICROM.2014.6991023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new controller design method for first order unstable processes with time delay. First, the conditions that guarantee internal stability of closed-loop system are investigated, then analytic rules for the proposed controllers tuning are developed. The tuning rules are simple and result in good closed-loop behavior. Examples are given to illustrate the simplicity and superiority of the proposed method compared with some existing ones.\",\"PeriodicalId\":177375,\"journal\":{\"name\":\"2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICROM.2014.6991023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICROM.2014.6991023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对一阶不稳定时滞过程,提出了一种新的控制器设计方法。首先研究了闭环系统内部稳定的保证条件,然后给出了所提控制器整定的解析规则。该调优规则很简单,可以产生良好的闭环行为。算例表明,与现有的方法相比,本文提出的方法简单、优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of the tuning formula for unstable first order processes with time delay
This paper presents a new controller design method for first order unstable processes with time delay. First, the conditions that guarantee internal stability of closed-loop system are investigated, then analytic rules for the proposed controllers tuning are developed. The tuning rules are simple and result in good closed-loop behavior. Examples are given to illustrate the simplicity and superiority of the proposed method compared with some existing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信