相控串并联谐振变换器的无传感器多回路控制

A. Aboushady, K. Ahmed
{"title":"相控串并联谐振变换器的无传感器多回路控制","authors":"A. Aboushady, K. Ahmed","doi":"10.1109/ICRERA.2014.7016435","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-loop controller for phase-controlled series-parallel resonant converter. Output voltage is solely measured for control and inner loop is used to enhance closed loop stability and dynamic performance compared to single-loop control. No additional sensors are used for inner loop variables. These are estimated using a Kalman filter, based on a linearized converter model. The advantage of this sensorless scheme is not only reducing the number of sensors but more significantly providing an alternative to sensing high frequency resonant tank variables which require high microcontroller resolution in real time. First, the converter non-linear large signal behavior is linearized using a state feedback based scheme. Consequently, the converter preserves its large signal characteristics while modeled as a linear system. Comparison is made between the most suitable state variables for feedback, according to a stability study. Finally, simulation and experimental results are demonstrated to validate the improved system performance in contrast with single-loop control.","PeriodicalId":243870,"journal":{"name":"2014 International Conference on Renewable Energy Research and Application (ICRERA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensorless multi-loop control of phase-controlled series-parallel resonant converter\",\"authors\":\"A. Aboushady, K. Ahmed\",\"doi\":\"10.1109/ICRERA.2014.7016435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multi-loop controller for phase-controlled series-parallel resonant converter. Output voltage is solely measured for control and inner loop is used to enhance closed loop stability and dynamic performance compared to single-loop control. No additional sensors are used for inner loop variables. These are estimated using a Kalman filter, based on a linearized converter model. The advantage of this sensorless scheme is not only reducing the number of sensors but more significantly providing an alternative to sensing high frequency resonant tank variables which require high microcontroller resolution in real time. First, the converter non-linear large signal behavior is linearized using a state feedback based scheme. Consequently, the converter preserves its large signal characteristics while modeled as a linear system. Comparison is made between the most suitable state variables for feedback, according to a stability study. Finally, simulation and experimental results are demonstrated to validate the improved system performance in contrast with single-loop control.\",\"PeriodicalId\":243870,\"journal\":{\"name\":\"2014 International Conference on Renewable Energy Research and Application (ICRERA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Renewable Energy Research and Application (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2014.7016435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Renewable Energy Research and Application (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2014.7016435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于相控串并联谐振变换器的多回路控制器。输出电压仅用于控制,与单环控制相比,内环用于增强闭环稳定性和动态性能。内部循环变量不使用额外的传感器。这些估计使用卡尔曼滤波器,基于线性化的转换器模型。这种无传感器方案的优点不仅是减少了传感器的数量,而且更重要的是提供了一种替代方法来实时检测需要高微控制器分辨率的高频谐振槽变量。首先,使用基于状态反馈的方案对变换器的非线性大信号行为进行线性化。因此,转换器在作为线性系统建模时保留了其大信号特性。根据稳定性研究,比较了最适合反馈的状态变量。最后,仿真和实验结果验证了与单回路控制相比改进后的系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensorless multi-loop control of phase-controlled series-parallel resonant converter
This paper proposes a multi-loop controller for phase-controlled series-parallel resonant converter. Output voltage is solely measured for control and inner loop is used to enhance closed loop stability and dynamic performance compared to single-loop control. No additional sensors are used for inner loop variables. These are estimated using a Kalman filter, based on a linearized converter model. The advantage of this sensorless scheme is not only reducing the number of sensors but more significantly providing an alternative to sensing high frequency resonant tank variables which require high microcontroller resolution in real time. First, the converter non-linear large signal behavior is linearized using a state feedback based scheme. Consequently, the converter preserves its large signal characteristics while modeled as a linear system. Comparison is made between the most suitable state variables for feedback, according to a stability study. Finally, simulation and experimental results are demonstrated to validate the improved system performance in contrast with single-loop control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信