评估NGBoost作为v波段功率衰减概率预测模型

R. Gesner, Christos G. Christodoulou, Steven A. Lane
{"title":"评估NGBoost作为v波段功率衰减概率预测模型","authors":"R. Gesner, Christos G. Christodoulou, Steven A. Lane","doi":"10.1109/USNC-URSI52151.2023.10238207","DOIUrl":null,"url":null,"abstract":"A novel application of probabilistic prediction for estimating mm-wave attenuation due to varying weather conditions is developed. Validation of atmospheric propagation models in the W/V-bands has progressed greatly in past years, but the confidence of their predictions has not been validated. The Natural Gradient Boosting (NGBoost) algorithm is tested against a deep neural network to estimate atmospheric attenuation on a 72 GHz terrestrial link and to demonstrate the ability to produce prediction confidence estimates.","PeriodicalId":383636,"journal":{"name":"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating NGBoost as a Model for Probabilistic Prediction for V-Band Power Attenuation\",\"authors\":\"R. Gesner, Christos G. Christodoulou, Steven A. Lane\",\"doi\":\"10.1109/USNC-URSI52151.2023.10238207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel application of probabilistic prediction for estimating mm-wave attenuation due to varying weather conditions is developed. Validation of atmospheric propagation models in the W/V-bands has progressed greatly in past years, but the confidence of their predictions has not been validated. The Natural Gradient Boosting (NGBoost) algorithm is tested against a deep neural network to estimate atmospheric attenuation on a 72 GHz terrestrial link and to demonstrate the ability to produce prediction confidence estimates.\",\"PeriodicalId\":383636,\"journal\":{\"name\":\"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USNC-URSI52151.2023.10238207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USNC-URSI52151.2023.10238207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的应用概率预测方法来估计由于天气条件变化引起的毫米波衰减。对W/ v波段大气传播模式的验证在过去几年中取得了很大进展,但其预测的可信度尚未得到验证。自然梯度增强(NGBoost)算法在深度神经网络上进行了测试,以估计72 GHz地面链路上的大气衰减,并证明了产生预测置信估计的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating NGBoost as a Model for Probabilistic Prediction for V-Band Power Attenuation
A novel application of probabilistic prediction for estimating mm-wave attenuation due to varying weather conditions is developed. Validation of atmospheric propagation models in the W/V-bands has progressed greatly in past years, but the confidence of their predictions has not been validated. The Natural Gradient Boosting (NGBoost) algorithm is tested against a deep neural network to estimate atmospheric attenuation on a 72 GHz terrestrial link and to demonstrate the ability to produce prediction confidence estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信