低功耗SoC边缘器件的硬件信任根设计

Alan Ehret, Eliakin Del Rosario, K. Gettings, M. Kinsy
{"title":"低功耗SoC边缘器件的硬件信任根设计","authors":"Alan Ehret, Eliakin Del Rosario, K. Gettings, M. Kinsy","doi":"10.1109/HPEC43674.2020.9286164","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a hardware root-of-trust architecture for low-power edge devices. An accelerator-based SoC design that includes the hardware root-of-trust architecture is developed. An example application for the device is presented. We examine attacks based on physical access given the significant threat they pose to unattended edge systems. The hardware root-of-trust provides security features to ensure the integrity of the SoC execution environment when deployed in uncontrolled, unattended locations. E-fused boot memory ensures the boot code and other security critical software is not compromised after deployment. Digitally signed programmable instruction memory prevents execution of code from untrusted sources. A programmable finite state machine is used to enforce access policies to device resources even if the application software on the device is compromised. Access policies isolate the execution states of application and security-critical software. The hardware root-of-trust architecture saves energy with a lower hardware overhead than a separate secure enclave while eliminating software attack surfaces for access control policies.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Hardware Root-of-Trust Design for Low-Power SoC Edge Devices\",\"authors\":\"Alan Ehret, Eliakin Del Rosario, K. Gettings, M. Kinsy\",\"doi\":\"10.1109/HPEC43674.2020.9286164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a hardware root-of-trust architecture for low-power edge devices. An accelerator-based SoC design that includes the hardware root-of-trust architecture is developed. An example application for the device is presented. We examine attacks based on physical access given the significant threat they pose to unattended edge systems. The hardware root-of-trust provides security features to ensure the integrity of the SoC execution environment when deployed in uncontrolled, unattended locations. E-fused boot memory ensures the boot code and other security critical software is not compromised after deployment. Digitally signed programmable instruction memory prevents execution of code from untrusted sources. A programmable finite state machine is used to enforce access policies to device resources even if the application software on the device is compromised. Access policies isolate the execution states of application and security-critical software. The hardware root-of-trust architecture saves energy with a lower hardware overhead than a separate secure enclave while eliminating software attack surfaces for access control policies.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们为低功耗边缘设备引入了一种硬件信任根架构。开发了一种基于加速器的SoC设计,包括硬件信任根架构。给出了该装置的一个应用实例。我们检查基于物理访问的攻击,因为它们对无人值守的边缘系统构成重大威胁。硬件信任根提供安全功能,以确保部署在不受控制的无人值守位置时SoC执行环境的完整性。e -fuse引导内存确保启动代码和其他安全关键软件在部署后不会受到损害。数字签名可编程指令存储器防止执行来自不可信来源的代码。可编程有限状态机用于对设备资源实施访问策略,即使设备上的应用程序软件受到威胁。访问策略隔离应用程序和安全关键型软件的执行状态。硬件信任根架构比单独的安全飞地节省了能源,硬件开销更低,同时消除了访问控制策略的软件攻击面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hardware Root-of-Trust Design for Low-Power SoC Edge Devices
In this work, we introduce a hardware root-of-trust architecture for low-power edge devices. An accelerator-based SoC design that includes the hardware root-of-trust architecture is developed. An example application for the device is presented. We examine attacks based on physical access given the significant threat they pose to unattended edge systems. The hardware root-of-trust provides security features to ensure the integrity of the SoC execution environment when deployed in uncontrolled, unattended locations. E-fused boot memory ensures the boot code and other security critical software is not compromised after deployment. Digitally signed programmable instruction memory prevents execution of code from untrusted sources. A programmable finite state machine is used to enforce access policies to device resources even if the application software on the device is compromised. Access policies isolate the execution states of application and security-critical software. The hardware root-of-trust architecture saves energy with a lower hardware overhead than a separate secure enclave while eliminating software attack surfaces for access control policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信