{"title":"基于固定先验和重尾语音模型的语音存在概率估计","authors":"Balázs Fodor, Timo Gerkmann","doi":"10.5281/ZENODO.43797","DOIUrl":null,"url":null,"abstract":"Speech enhancement approaches are often enhanced by speech presence probability (SPP) estimation. However, SPP estimators suffer from random fluctuations of the a posteriori signal-to-noise ratio (SNR). While there exist proposals that overcome the random fluctuations by basing the SPP framework on smoothed observations, these approaches do not take into account the super-Gaussian nature of speech signals. Thus, in this paper we define a framework that allows for modeling the likelihoods of speech presence for smoothed observations, while at the same time assuming super-Gaussian speech coefficients. The proposed approach is shown to outperform the reference approaches in terms of the amount of noise leakage and the amount of musical noise.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A speech presence probability estimator based on fixed priors and a heavy-tailed speech model\",\"authors\":\"Balázs Fodor, Timo Gerkmann\",\"doi\":\"10.5281/ZENODO.43797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech enhancement approaches are often enhanced by speech presence probability (SPP) estimation. However, SPP estimators suffer from random fluctuations of the a posteriori signal-to-noise ratio (SNR). While there exist proposals that overcome the random fluctuations by basing the SPP framework on smoothed observations, these approaches do not take into account the super-Gaussian nature of speech signals. Thus, in this paper we define a framework that allows for modeling the likelihoods of speech presence for smoothed observations, while at the same time assuming super-Gaussian speech coefficients. The proposed approach is shown to outperform the reference approaches in terms of the amount of noise leakage and the amount of musical noise.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.43797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A speech presence probability estimator based on fixed priors and a heavy-tailed speech model
Speech enhancement approaches are often enhanced by speech presence probability (SPP) estimation. However, SPP estimators suffer from random fluctuations of the a posteriori signal-to-noise ratio (SNR). While there exist proposals that overcome the random fluctuations by basing the SPP framework on smoothed observations, these approaches do not take into account the super-Gaussian nature of speech signals. Thus, in this paper we define a framework that allows for modeling the likelihoods of speech presence for smoothed observations, while at the same time assuming super-Gaussian speech coefficients. The proposed approach is shown to outperform the reference approaches in terms of the amount of noise leakage and the amount of musical noise.