分数阶系统:初值问题及其稳定性的一种方法

J. León, G. Fernández‐Anaya, R. Martínez-Martínez
{"title":"分数阶系统:初值问题及其稳定性的一种方法","authors":"J. León, G. Fernández‐Anaya, R. Martínez-Martínez","doi":"10.1109/ICEEE.2013.6676076","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the initial value problem and its stability for fractional autonomous order systems in the usual sense. Our result in the linear case is equivalent to the one known in literature; this establishes the mathematic technique in order to solve the problem with initial trajectory that will be presented in future studies. The conditions that are shown are simpler to verify than the ones that are commonly known and have a close relationship with the calculations for the integer case.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractional order systems: an Approach to the initial value problem and its stability\",\"authors\":\"J. León, G. Fernández‐Anaya, R. Martínez-Martínez\",\"doi\":\"10.1109/ICEEE.2013.6676076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the initial value problem and its stability for fractional autonomous order systems in the usual sense. Our result in the linear case is equivalent to the one known in literature; this establishes the mathematic technique in order to solve the problem with initial trajectory that will be presented in future studies. The conditions that are shown are simpler to verify than the ones that are commonly known and have a close relationship with the calculations for the integer case.\",\"PeriodicalId\":226547,\"journal\":{\"name\":\"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2013.6676076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了通常意义上的分数阶自治阶系统的初值问题及其稳定性。我们在线性情况下的结果与文献中已知的结果是等价的;这为解决具有初始轨迹的问题建立了数学技术,这将在未来的研究中提出。所示的条件比通常已知的条件更容易验证,并且与整数情况的计算有密切的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional order systems: an Approach to the initial value problem and its stability
In this paper, we discuss the initial value problem and its stability for fractional autonomous order systems in the usual sense. Our result in the linear case is equivalent to the one known in literature; this establishes the mathematic technique in order to solve the problem with initial trajectory that will be presented in future studies. The conditions that are shown are simpler to verify than the ones that are commonly known and have a close relationship with the calculations for the integer case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信