利用GPU子图枚举的重用(扩展摘要)

Wentian Guo, Yuchen Li, K. Tan
{"title":"利用GPU子图枚举的重用(扩展摘要)","authors":"Wentian Guo, Yuchen Li, K. Tan","doi":"10.1109/ICDE55515.2023.00309","DOIUrl":null,"url":null,"abstract":"Subgraph enumeration is important for many applications such as network motif discovery, community detection, and frequent subgraph mining. To accelerate the execution, recent works utilize graphics processing units (GPUs) to parallelize subgraph enumeration. The performances of these parallel schemes are dominated by the set intersection operations which account for up to 95% of the total processing time. (Un)surprisingly, a significant portion (as high as 99%) of these operations is actually redundant, i.e., the same set of vertices is repeatedly encountered and evaluated. Therefore, in this paper, we seek to salvage and recycle the results of such operations to avoid repeated computation. Our solution consists of two phases. In the first phase, we generate a reusable plan that determines the opportunity for reuse. The plan is based on a novel reuse discovery mechanism that can identify available results to prevent redundant computation. In the second phase, the plan is executed to produce the subgraph enumeration results. This processing is based on a newly designed reusable parallel search strategy that can efficiently maintain and retrieve the results of set intersection operations. Our implementation on GPUs shows that our approach can achieve up to 5 times speedups compared with the state-of-the-art GPU solutions.","PeriodicalId":434744,"journal":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Reuse for GPU Subgraph Enumeration (Extended Abstract)\",\"authors\":\"Wentian Guo, Yuchen Li, K. Tan\",\"doi\":\"10.1109/ICDE55515.2023.00309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subgraph enumeration is important for many applications such as network motif discovery, community detection, and frequent subgraph mining. To accelerate the execution, recent works utilize graphics processing units (GPUs) to parallelize subgraph enumeration. The performances of these parallel schemes are dominated by the set intersection operations which account for up to 95% of the total processing time. (Un)surprisingly, a significant portion (as high as 99%) of these operations is actually redundant, i.e., the same set of vertices is repeatedly encountered and evaluated. Therefore, in this paper, we seek to salvage and recycle the results of such operations to avoid repeated computation. Our solution consists of two phases. In the first phase, we generate a reusable plan that determines the opportunity for reuse. The plan is based on a novel reuse discovery mechanism that can identify available results to prevent redundant computation. In the second phase, the plan is executed to produce the subgraph enumeration results. This processing is based on a newly designed reusable parallel search strategy that can efficiently maintain and retrieve the results of set intersection operations. Our implementation on GPUs shows that our approach can achieve up to 5 times speedups compared with the state-of-the-art GPU solutions.\",\"PeriodicalId\":434744,\"journal\":{\"name\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE55515.2023.00309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE55515.2023.00309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

子图枚举对于网络基序发现、社区检测和频繁子图挖掘等应用具有重要意义。为了加速执行,最近的工作利用图形处理单元(gpu)来并行子图枚举。这些并行方案的性能主要取决于集合交集运算,交集运算占总处理时间的95%以上。令人惊讶的是,这些操作中有很大一部分(高达99%)实际上是冗余的,即重复遇到和评估相同的一组顶点。因此,在本文中,我们寻求挽救和回收这些操作的结果,以避免重复计算。我们的解决方案包括两个阶段。在第一个阶段,我们生成一个可重用计划来确定重用的机会。该计划基于一种新的重用发现机制,该机制可以识别可用的结果以防止冗余计算。在第二阶段,执行该计划以生成子图枚举结果。该处理基于新设计的可重用并行搜索策略,该策略可以有效地维护和检索集合交集操作的结果。我们在GPU上的实现表明,与最先进的GPU解决方案相比,我们的方法可以实现高达5倍的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Reuse for GPU Subgraph Enumeration (Extended Abstract)
Subgraph enumeration is important for many applications such as network motif discovery, community detection, and frequent subgraph mining. To accelerate the execution, recent works utilize graphics processing units (GPUs) to parallelize subgraph enumeration. The performances of these parallel schemes are dominated by the set intersection operations which account for up to 95% of the total processing time. (Un)surprisingly, a significant portion (as high as 99%) of these operations is actually redundant, i.e., the same set of vertices is repeatedly encountered and evaluated. Therefore, in this paper, we seek to salvage and recycle the results of such operations to avoid repeated computation. Our solution consists of two phases. In the first phase, we generate a reusable plan that determines the opportunity for reuse. The plan is based on a novel reuse discovery mechanism that can identify available results to prevent redundant computation. In the second phase, the plan is executed to produce the subgraph enumeration results. This processing is based on a newly designed reusable parallel search strategy that can efficiently maintain and retrieve the results of set intersection operations. Our implementation on GPUs shows that our approach can achieve up to 5 times speedups compared with the state-of-the-art GPU solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信