{"title":"短期时空风预报的核心方法","authors":"J. Dowell, Stephan Weiss, D. Infield","doi":"10.1109/PESGM.2015.7285965","DOIUrl":null,"url":null,"abstract":"Two nonlinear methods for producing short-term spatio-temporal wind speed forecast are presented. From the relatively new class of kernel methods, a kernel least mean squares algorithm and kernel recursive least squares algorithm are introduced and used to produce 1 to 6 hour-ahead predictions of wind speed at six locations in the Netherlands. The performance of the proposed methods are compared to their linear equivalents, as well as the autoregressive, vector autoregressive and persistence time series models. The kernel recursive least squares algorithm is shown to offer significant improvement over all benchmarks, particularly for longer forecast horizons. Both proposed algorithms exhibit desirable numerical properties and are ripe for further development.","PeriodicalId":423639,"journal":{"name":"2015 IEEE Power & Energy Society General Meeting","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Kernel methods for short-term spatio-temporal wind prediction\",\"authors\":\"J. Dowell, Stephan Weiss, D. Infield\",\"doi\":\"10.1109/PESGM.2015.7285965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two nonlinear methods for producing short-term spatio-temporal wind speed forecast are presented. From the relatively new class of kernel methods, a kernel least mean squares algorithm and kernel recursive least squares algorithm are introduced and used to produce 1 to 6 hour-ahead predictions of wind speed at six locations in the Netherlands. The performance of the proposed methods are compared to their linear equivalents, as well as the autoregressive, vector autoregressive and persistence time series models. The kernel recursive least squares algorithm is shown to offer significant improvement over all benchmarks, particularly for longer forecast horizons. Both proposed algorithms exhibit desirable numerical properties and are ripe for further development.\",\"PeriodicalId\":423639,\"journal\":{\"name\":\"2015 IEEE Power & Energy Society General Meeting\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Power & Energy Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM.2015.7285965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2015.7285965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kernel methods for short-term spatio-temporal wind prediction
Two nonlinear methods for producing short-term spatio-temporal wind speed forecast are presented. From the relatively new class of kernel methods, a kernel least mean squares algorithm and kernel recursive least squares algorithm are introduced and used to produce 1 to 6 hour-ahead predictions of wind speed at six locations in the Netherlands. The performance of the proposed methods are compared to their linear equivalents, as well as the autoregressive, vector autoregressive and persistence time series models. The kernel recursive least squares algorithm is shown to offer significant improvement over all benchmarks, particularly for longer forecast horizons. Both proposed algorithms exhibit desirable numerical properties and are ripe for further development.