使用量子退火生成稀疏表示:与经典算法的比较

N. T. Nguyen, Amy E. Larson, Garrett T. Kenyon
{"title":"使用量子退火生成稀疏表示:与经典算法的比较","authors":"N. T. Nguyen, Amy E. Larson, Garrett T. Kenyon","doi":"10.1109/ICRC.2017.8123653","DOIUrl":null,"url":null,"abstract":"We use a quantum annealing D-Wave 2X (1,152-qubit) computer to generate sparse representations of Canny-filtered, center-cropped 30x30 CIFAR-10 images. Each binary neuron (qubit) represents a feature kernel obtained initially by imprinting on a randomly chosen 5x5 image patch and then adapted via an off-line Hebbian learning protocol using the sparse solutions generated by the D-Wave. When using binary neurons, the energy function is non-convex (multiple local-minima) and finding a global minimum is NP-hard. Quantum annealing provides a strategy for finding sparse representations that correspond to good local minima of a non-convex cost function. To overcome the severe coupling restrictions between physical qubits on the D-Wave Chimera graph, we use embedding tools to achieve approximately all-to-all connectivity across a reduced number of logical qubits. We assess the sparse representations generated by the D-Wave using both the total energy as well as classification accuracy on a subset of the CIFAR-10 database. The D-Wave 2X outperforms two classical state-of-the-art binary solvers, GUROBI and Chimera-inspired algorithm Hamze-Freitas-Selby (HFS). Specifically, the D-Wave 2X yields lower energy sparse solutions within seconds while the largest problems take over 10 hours for both GUROBI and HFS. We obtained cross-validation classification of 31.02% for the first 4K images using 47 features on the quantum D- Wave 2X.","PeriodicalId":125114,"journal":{"name":"2017 IEEE International Conference on Rebooting Computing (ICRC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Generating Sparse Representations Using Quantum Annealing: Comparison to Classical Algorithms\",\"authors\":\"N. T. Nguyen, Amy E. Larson, Garrett T. Kenyon\",\"doi\":\"10.1109/ICRC.2017.8123653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a quantum annealing D-Wave 2X (1,152-qubit) computer to generate sparse representations of Canny-filtered, center-cropped 30x30 CIFAR-10 images. Each binary neuron (qubit) represents a feature kernel obtained initially by imprinting on a randomly chosen 5x5 image patch and then adapted via an off-line Hebbian learning protocol using the sparse solutions generated by the D-Wave. When using binary neurons, the energy function is non-convex (multiple local-minima) and finding a global minimum is NP-hard. Quantum annealing provides a strategy for finding sparse representations that correspond to good local minima of a non-convex cost function. To overcome the severe coupling restrictions between physical qubits on the D-Wave Chimera graph, we use embedding tools to achieve approximately all-to-all connectivity across a reduced number of logical qubits. We assess the sparse representations generated by the D-Wave using both the total energy as well as classification accuracy on a subset of the CIFAR-10 database. The D-Wave 2X outperforms two classical state-of-the-art binary solvers, GUROBI and Chimera-inspired algorithm Hamze-Freitas-Selby (HFS). Specifically, the D-Wave 2X yields lower energy sparse solutions within seconds while the largest problems take over 10 hours for both GUROBI and HFS. We obtained cross-validation classification of 31.02% for the first 4K images using 47 features on the quantum D- Wave 2X.\",\"PeriodicalId\":125114,\"journal\":{\"name\":\"2017 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2017.8123653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2017.8123653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们使用量子退火D-Wave 2X(1,152量子位)计算机生成canny滤波、中心裁剪的30x30 CIFAR-10图像的稀疏表示。每个二进制神经元(量子比特)代表一个特征核,最初是通过在随机选择的5x5图像补丁上进行印迹获得的,然后通过使用D-Wave生成的稀疏解决方案通过离线Hebbian学习协议进行调整。当使用二值神经元时,能量函数是非凸的(多个局部最小值),寻找全局最小值是np困难的。量子退火提供了一种寻找稀疏表示的策略,这些表示对应于非凸代价函数的良好局部最小值。为了克服D-Wave Chimera图上物理量子位之间的严重耦合限制,我们使用嵌入工具在减少数量的逻辑量子位上实现大约全对全的连接。我们在CIFAR-10数据库的一个子集上使用总能量和分类精度来评估D-Wave生成的稀疏表示。D-Wave 2X优于两种经典的最先进的二进制求解器,即GUROBI和chimera启发的算法Hamze-Freitas-Selby (HFS)。具体来说,D-Wave 2X在几秒钟内就能产生较低能量的稀疏解决方案,而对于GUROBI和HFS来说,最大的问题需要10个多小时。我们在量子D- Wave 2X上使用47个特征获得了首批4K图像的交叉验证分类率为31.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Sparse Representations Using Quantum Annealing: Comparison to Classical Algorithms
We use a quantum annealing D-Wave 2X (1,152-qubit) computer to generate sparse representations of Canny-filtered, center-cropped 30x30 CIFAR-10 images. Each binary neuron (qubit) represents a feature kernel obtained initially by imprinting on a randomly chosen 5x5 image patch and then adapted via an off-line Hebbian learning protocol using the sparse solutions generated by the D-Wave. When using binary neurons, the energy function is non-convex (multiple local-minima) and finding a global minimum is NP-hard. Quantum annealing provides a strategy for finding sparse representations that correspond to good local minima of a non-convex cost function. To overcome the severe coupling restrictions between physical qubits on the D-Wave Chimera graph, we use embedding tools to achieve approximately all-to-all connectivity across a reduced number of logical qubits. We assess the sparse representations generated by the D-Wave using both the total energy as well as classification accuracy on a subset of the CIFAR-10 database. The D-Wave 2X outperforms two classical state-of-the-art binary solvers, GUROBI and Chimera-inspired algorithm Hamze-Freitas-Selby (HFS). Specifically, the D-Wave 2X yields lower energy sparse solutions within seconds while the largest problems take over 10 hours for both GUROBI and HFS. We obtained cross-validation classification of 31.02% for the first 4K images using 47 features on the quantum D- Wave 2X.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信