扩展多目标跟踪的测量分区和关联的吉布斯抽样

J. Honer, Fabian Schmieder
{"title":"扩展多目标跟踪的测量分区和关联的吉布斯抽样","authors":"J. Honer, Fabian Schmieder","doi":"10.23919/fusion43075.2019.9011272","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach to handle the extended target association problem in multi-target tracking for conjugate priors like the $\\delta$-GLMB, LMB, PMBM and MBM. By introducing dependencies between partition cells we are able to employ a Gibbs sampler to simultaneously sample from partitions of the measurement set and association mappings. This formulation allows for a reduction of the approximation error as well as a more efficient implementation.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gibbs Sampling of Measurement Partitions and Associations for Extended Multi-Target Tracking\",\"authors\":\"J. Honer, Fabian Schmieder\",\"doi\":\"10.23919/fusion43075.2019.9011272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel approach to handle the extended target association problem in multi-target tracking for conjugate priors like the $\\\\delta$-GLMB, LMB, PMBM and MBM. By introducing dependencies between partition cells we are able to employ a Gibbs sampler to simultaneously sample from partitions of the measurement set and association mappings. This formulation allows for a reduction of the approximation error as well as a more efficient implementation.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对$\delta$-GLMB、LMB、PMBM和MBM等共轭先验,提出了一种处理多目标跟踪中扩展目标关联问题的新方法。通过引入分区单元之间的依赖关系,我们能够使用吉布斯采样器同时从测量集和关联映射的分区中采样。该公式允许减少近似误差以及更有效的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gibbs Sampling of Measurement Partitions and Associations for Extended Multi-Target Tracking
In this paper we propose a novel approach to handle the extended target association problem in multi-target tracking for conjugate priors like the $\delta$-GLMB, LMB, PMBM and MBM. By introducing dependencies between partition cells we are able to employ a Gibbs sampler to simultaneously sample from partitions of the measurement set and association mappings. This formulation allows for a reduction of the approximation error as well as a more efficient implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信