非线性系统内模控制的逆递归神经网络

C. Kambhampati, R. Craddock, M. Tham, K. Warwick
{"title":"非线性系统内模控制的逆递归神经网络","authors":"C. Kambhampati, R. Craddock, M. Tham, K. Warwick","doi":"10.1109/ACC.1998.703554","DOIUrl":null,"url":null,"abstract":"In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.","PeriodicalId":364267,"journal":{"name":"Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Inverting recurrent neural networks for internal model control of nonlinear systems\",\"authors\":\"C. Kambhampati, R. Craddock, M. Tham, K. Warwick\",\"doi\":\"10.1109/ACC.1998.703554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.\",\"PeriodicalId\":364267,\"journal\":{\"name\":\"Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1998.703554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1998.703554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们展示了如何将一组最近导出的关于循环神经网络的理论结果应用于非线性装置的内模控制系统的生产。结果包括确定递归神经网络的相对顺序和这种网络的可逆性。在不需要重新训练神经网络对象模型的情况下,产生闭环控制器。验证了闭环控制器的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverting recurrent neural networks for internal model control of nonlinear systems
In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信