残差分析在特征检测中的一些结果

M.-H. Chen, D. Lee, T. Pavlidis
{"title":"残差分析在特征检测中的一些结果","authors":"M.-H. Chen, D. Lee, T. Pavlidis","doi":"10.1109/ICPR.1990.118187","DOIUrl":null,"url":null,"abstract":"Images are considered as consisting of three parts: features, noise, and smooth components. After a smoothing operation, the difference between the result and the original image has the characteristics of noise in areas away from features. Systematic trends in the difference indicate features such as edges, corners, or textures. It is shown that the autocorrelation function of the residuals takes specific forms when computed along various paths, and in particular along a circle or a disk centered at a zero crossing of residuals. Then, feature detection is reduced to classifying the autocorrelation profile. An implementation of this technique is described.<<ETX>>","PeriodicalId":135937,"journal":{"name":"[1990] Proceedings. 10th International Conference on Pattern Recognition","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Some results on feature detection using residual analysis\",\"authors\":\"M.-H. Chen, D. Lee, T. Pavlidis\",\"doi\":\"10.1109/ICPR.1990.118187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images are considered as consisting of three parts: features, noise, and smooth components. After a smoothing operation, the difference between the result and the original image has the characteristics of noise in areas away from features. Systematic trends in the difference indicate features such as edges, corners, or textures. It is shown that the autocorrelation function of the residuals takes specific forms when computed along various paths, and in particular along a circle or a disk centered at a zero crossing of residuals. Then, feature detection is reduced to classifying the autocorrelation profile. An implementation of this technique is described.<<ETX>>\",\"PeriodicalId\":135937,\"journal\":{\"name\":\"[1990] Proceedings. 10th International Conference on Pattern Recognition\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings. 10th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1990.118187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. 10th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1990.118187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像被认为由三部分组成:特征、噪声和平滑分量。经过平滑处理后的结果与原始图像的差值在远离特征的区域具有噪声特征。差异中的系统趋势表示诸如边缘、角或纹理等特征。结果表明,残差的自相关函数在沿不同路径计算时,特别是沿残差的零交叉点为中心的圆或盘计算时,具有特定的形式。然后,特征检测被简化为对自相关轮廓进行分类。本文描述了该技术的一个实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on feature detection using residual analysis
Images are considered as consisting of three parts: features, noise, and smooth components. After a smoothing operation, the difference between the result and the original image has the characteristics of noise in areas away from features. Systematic trends in the difference indicate features such as edges, corners, or textures. It is shown that the autocorrelation function of the residuals takes specific forms when computed along various paths, and in particular along a circle or a disk centered at a zero crossing of residuals. Then, feature detection is reduced to classifying the autocorrelation profile. An implementation of this technique is described.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信