面向社会网络情感分析的集体分类

J. Rabelo, R. Prudêncio, F. Barros
{"title":"面向社会网络情感分析的集体分类","authors":"J. Rabelo, R. Prudêncio, F. Barros","doi":"10.1109/ICTAI.2012.135","DOIUrl":null,"url":null,"abstract":"The emergence of online social networks has generated an enormous amount of data containing users' opinions about the most varied subjects. Aiming to identify opinion orientation, Sentiment Analysis techniques have been proposed, mainly based on text classification methods. We propose a different perspective to treat this problem, based on a user centric approach. We adopt a graph representation in which nodes represent users and connections represent relationships in a social network. Then, we apply collective classification techniques which use link information to infer opinions of users who have not posted their opinion about the subject under analysis. Preliminary experiments on a Twitter corpus of political preferences have shown promising results.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Collective Classification for Sentiment Analysis in Social Networks\",\"authors\":\"J. Rabelo, R. Prudêncio, F. Barros\",\"doi\":\"10.1109/ICTAI.2012.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of online social networks has generated an enormous amount of data containing users' opinions about the most varied subjects. Aiming to identify opinion orientation, Sentiment Analysis techniques have been proposed, mainly based on text classification methods. We propose a different perspective to treat this problem, based on a user centric approach. We adopt a graph representation in which nodes represent users and connections represent relationships in a social network. Then, we apply collective classification techniques which use link information to infer opinions of users who have not posted their opinion about the subject under analysis. Preliminary experiments on a Twitter corpus of political preferences have shown promising results.\",\"PeriodicalId\":155588,\"journal\":{\"name\":\"2012 IEEE 24th International Conference on Tools with Artificial Intelligence\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 24th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2012.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在线社交网络的出现产生了大量的数据,这些数据包含了用户对各种主题的看法。为了识别意见倾向,情感分析技术被提出,主要基于文本分类方法。基于以用户为中心的方法,我们提出了一种不同的视角来处理这个问题。我们采用图表示,其中节点表示用户,连接表示社交网络中的关系。然后,我们应用集体分类技术,使用链接信息来推断尚未发表对所分析主题的意见的用户的意见。对Twitter政治偏好语料库的初步实验显示出了可喜的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collective Classification for Sentiment Analysis in Social Networks
The emergence of online social networks has generated an enormous amount of data containing users' opinions about the most varied subjects. Aiming to identify opinion orientation, Sentiment Analysis techniques have been proposed, mainly based on text classification methods. We propose a different perspective to treat this problem, based on a user centric approach. We adopt a graph representation in which nodes represent users and connections represent relationships in a social network. Then, we apply collective classification techniques which use link information to infer opinions of users who have not posted their opinion about the subject under analysis. Preliminary experiments on a Twitter corpus of political preferences have shown promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信