嵌入式基因选择的不平衡微阵列数据分析

Guozheng Li, Hao-Hua Meng, Jun Ni
{"title":"嵌入式基因选择的不平衡微阵列数据分析","authors":"Guozheng Li, Hao-Hua Meng, Jun Ni","doi":"10.1109/IMSCCS.2008.33","DOIUrl":null,"url":null,"abstract":"Most of microarray data sets are imbalanced, i.e. the number of positive examples is much less than that of negative, which will hurt performance of classifiers when it is used for tumor classification. Though it is critical, few previous works paid attention to this problem. Here we propose embedded gene selection with two algorithms i.e. EGSEE (Embedded Gene Selection for EasyEnsemble) and EGSIEE (Embedded Gene Selection for Individuals of EasyEnsemble) to treat this problem and improve generalization performance of the EasyEnsemble classifier. Experimental results on several microarray data sets show that compared with the previous two filter feature selection methods, EGSEE and EGSIEE obtain better performance.","PeriodicalId":122953,"journal":{"name":"2008 International Multi-symposiums on Computer and Computational Sciences","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Embedded Gene Selection for Imbalanced Microarray Data Analysis\",\"authors\":\"Guozheng Li, Hao-Hua Meng, Jun Ni\",\"doi\":\"10.1109/IMSCCS.2008.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of microarray data sets are imbalanced, i.e. the number of positive examples is much less than that of negative, which will hurt performance of classifiers when it is used for tumor classification. Though it is critical, few previous works paid attention to this problem. Here we propose embedded gene selection with two algorithms i.e. EGSEE (Embedded Gene Selection for EasyEnsemble) and EGSIEE (Embedded Gene Selection for Individuals of EasyEnsemble) to treat this problem and improve generalization performance of the EasyEnsemble classifier. Experimental results on several microarray data sets show that compared with the previous two filter feature selection methods, EGSEE and EGSIEE obtain better performance.\",\"PeriodicalId\":122953,\"journal\":{\"name\":\"2008 International Multi-symposiums on Computer and Computational Sciences\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Multi-symposiums on Computer and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMSCCS.2008.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Multi-symposiums on Computer and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSCCS.2008.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

大多数微阵列数据集是不平衡的,即阳性样本的数量远远少于阴性样本的数量,这将影响分类器在用于肿瘤分类时的性能。这是一个非常重要的问题,但在以往的研究中很少有人关注到这一问题。本文提出了两种嵌入式基因选择算法,即EGSEE (embedded gene selection for EasyEnsemble)和EGSIEE (embedded gene selection for Individuals of EasyEnsemble)来解决这一问题,并提高EasyEnsemble分类器的泛化性能。在多个微阵列数据集上的实验结果表明,与前两种滤波特征选择方法相比,EGSEE和EGSIEE获得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded Gene Selection for Imbalanced Microarray Data Analysis
Most of microarray data sets are imbalanced, i.e. the number of positive examples is much less than that of negative, which will hurt performance of classifiers when it is used for tumor classification. Though it is critical, few previous works paid attention to this problem. Here we propose embedded gene selection with two algorithms i.e. EGSEE (Embedded Gene Selection for EasyEnsemble) and EGSIEE (Embedded Gene Selection for Individuals of EasyEnsemble) to treat this problem and improve generalization performance of the EasyEnsemble classifier. Experimental results on several microarray data sets show that compared with the previous two filter feature selection methods, EGSEE and EGSIEE obtain better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信