{"title":"基于领域适应和增量学习的生理信号情绪识别方法","authors":"Junnan Li, Xiaoping Wang","doi":"10.1109/ICCSIE55183.2023.10175312","DOIUrl":null,"url":null,"abstract":"Temporal concept shift (TCS) is an unavoidable problem in physiological signal-based emotion recognition tasks, i.e., the data distribution of physiological signals is constantly changing over time, which gradually degrades the model accuracy. To this end, we propose a method based on a combination of domain adaptation and incremental learning to reduce the impact of temporal concept drift. In this paper, domain adaptation is used to reduce the distribution differences and incremental learning is used to prevent the learned knowledge from being forgotten. Finally, we validate the effectiveness of our approach on two real datasets.","PeriodicalId":391372,"journal":{"name":"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Physiological Signal Emotion Recognition Method Based on Domain Adaptation and Incremental Learning\",\"authors\":\"Junnan Li, Xiaoping Wang\",\"doi\":\"10.1109/ICCSIE55183.2023.10175312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal concept shift (TCS) is an unavoidable problem in physiological signal-based emotion recognition tasks, i.e., the data distribution of physiological signals is constantly changing over time, which gradually degrades the model accuracy. To this end, we propose a method based on a combination of domain adaptation and incremental learning to reduce the impact of temporal concept drift. In this paper, domain adaptation is used to reduce the distribution differences and incremental learning is used to prevent the learned knowledge from being forgotten. Finally, we validate the effectiveness of our approach on two real datasets.\",\"PeriodicalId\":391372,\"journal\":{\"name\":\"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSIE55183.2023.10175312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIE55183.2023.10175312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Physiological Signal Emotion Recognition Method Based on Domain Adaptation and Incremental Learning
Temporal concept shift (TCS) is an unavoidable problem in physiological signal-based emotion recognition tasks, i.e., the data distribution of physiological signals is constantly changing over time, which gradually degrades the model accuracy. To this end, we propose a method based on a combination of domain adaptation and incremental learning to reduce the impact of temporal concept drift. In this paper, domain adaptation is used to reduce the distribution differences and incremental learning is used to prevent the learned knowledge from being forgotten. Finally, we validate the effectiveness of our approach on two real datasets.