基于领域适应和增量学习的生理信号情绪识别方法

Junnan Li, Xiaoping Wang
{"title":"基于领域适应和增量学习的生理信号情绪识别方法","authors":"Junnan Li, Xiaoping Wang","doi":"10.1109/ICCSIE55183.2023.10175312","DOIUrl":null,"url":null,"abstract":"Temporal concept shift (TCS) is an unavoidable problem in physiological signal-based emotion recognition tasks, i.e., the data distribution of physiological signals is constantly changing over time, which gradually degrades the model accuracy. To this end, we propose a method based on a combination of domain adaptation and incremental learning to reduce the impact of temporal concept drift. In this paper, domain adaptation is used to reduce the distribution differences and incremental learning is used to prevent the learned knowledge from being forgotten. Finally, we validate the effectiveness of our approach on two real datasets.","PeriodicalId":391372,"journal":{"name":"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Physiological Signal Emotion Recognition Method Based on Domain Adaptation and Incremental Learning\",\"authors\":\"Junnan Li, Xiaoping Wang\",\"doi\":\"10.1109/ICCSIE55183.2023.10175312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal concept shift (TCS) is an unavoidable problem in physiological signal-based emotion recognition tasks, i.e., the data distribution of physiological signals is constantly changing over time, which gradually degrades the model accuracy. To this end, we propose a method based on a combination of domain adaptation and incremental learning to reduce the impact of temporal concept drift. In this paper, domain adaptation is used to reduce the distribution differences and incremental learning is used to prevent the learned knowledge from being forgotten. Finally, we validate the effectiveness of our approach on two real datasets.\",\"PeriodicalId\":391372,\"journal\":{\"name\":\"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSIE55183.2023.10175312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIE55183.2023.10175312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间概念转移(Temporal concept shift, TCS)是基于生理信号的情绪识别任务中不可避免的问题,即生理信号的数据分布随着时间的推移而不断变化,这逐渐降低了模型的准确性。为此,我们提出了一种基于领域自适应和增量学习相结合的方法来减少时间概念漂移的影响。本文采用领域自适应的方法来减小分布差异,采用增量学习的方法来防止所学知识被遗忘。最后,我们在两个真实数据集上验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Physiological Signal Emotion Recognition Method Based on Domain Adaptation and Incremental Learning
Temporal concept shift (TCS) is an unavoidable problem in physiological signal-based emotion recognition tasks, i.e., the data distribution of physiological signals is constantly changing over time, which gradually degrades the model accuracy. To this end, we propose a method based on a combination of domain adaptation and incremental learning to reduce the impact of temporal concept drift. In this paper, domain adaptation is used to reduce the distribution differences and incremental learning is used to prevent the learned knowledge from being forgotten. Finally, we validate the effectiveness of our approach on two real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信