包含区间和/或浮点数的非数值表达式的模糊简化

D. R. Stoutemyer
{"title":"包含区间和/或浮点数的非数值表达式的模糊简化","authors":"D. R. Stoutemyer","doi":"10.1145/2608628.2627489","DOIUrl":null,"url":null,"abstract":"This article describes a Mathematica package that improves simplification of general non-numeric expressions containing any mixture of Gaussian rational numbers, symbolic constants, machine and arbitrary-precision floating-point numbers, together with intervals having any mixture of such endpoints. Such generalized numbers are not automatically all converted to floats or to intervals. Expressions can be multivariate and non-polynomial. Techniques include:\n • Recognition and unification of approximately similar and approximately proportional factors and terms.\n • The option of infinity-norm normalization that is more robust than monic normalization.\n • The option of a unit-normal quasi-primitive normalization that uses large rational approximate common divisors of mixed number types and intervals to nicely normalize sums.\n • A polynomial division algorithm tolerant of terms with coefficients that are float zeros or intervals containing 0.\n • The ability to round or underflow negligible terms while satisfying the inclusion property of interval arithmetic.\n The package and a more detailed version of this article will be posted at arXiv.org.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy simplification of non-numeric expressions containing some intervals and/or floating point numbers\",\"authors\":\"D. R. Stoutemyer\",\"doi\":\"10.1145/2608628.2627489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a Mathematica package that improves simplification of general non-numeric expressions containing any mixture of Gaussian rational numbers, symbolic constants, machine and arbitrary-precision floating-point numbers, together with intervals having any mixture of such endpoints. Such generalized numbers are not automatically all converted to floats or to intervals. Expressions can be multivariate and non-polynomial. Techniques include:\\n • Recognition and unification of approximately similar and approximately proportional factors and terms.\\n • The option of infinity-norm normalization that is more robust than monic normalization.\\n • The option of a unit-normal quasi-primitive normalization that uses large rational approximate common divisors of mixed number types and intervals to nicely normalize sums.\\n • A polynomial division algorithm tolerant of terms with coefficients that are float zeros or intervals containing 0.\\n • The ability to round or underflow negligible terms while satisfying the inclusion property of interval arithmetic.\\n The package and a more detailed version of this article will be posted at arXiv.org.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2627489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2627489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一个Mathematica包,它改进了一般非数值表达式的简化,该表达式包含高斯有理数、符号常量、机器和任意精度浮点数的任意混合,以及具有这些端点的任意混合的区间。这些广义数不会自动全部转换为浮点数或区间。表达式可以是多元的和非多项式的。技术包括:•识别和统一近似相似和近似比例的因素和术语。•无限范数归一化的选项,这是更强大的比一元归一化。•使用混合数字类型和区间的大有理数近似公因数来很好地规范化总和的单位正规准原始规范化选项。一种多项式除法算法,可以容忍系数为浮点零或间隔为0的项。•在满足区间算术的包含性质的情况下,对可忽略项进行舍入或下溢的能力。该软件包和本文的更详细版本将发布在arXiv.org上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy simplification of non-numeric expressions containing some intervals and/or floating point numbers
This article describes a Mathematica package that improves simplification of general non-numeric expressions containing any mixture of Gaussian rational numbers, symbolic constants, machine and arbitrary-precision floating-point numbers, together with intervals having any mixture of such endpoints. Such generalized numbers are not automatically all converted to floats or to intervals. Expressions can be multivariate and non-polynomial. Techniques include: • Recognition and unification of approximately similar and approximately proportional factors and terms. • The option of infinity-norm normalization that is more robust than monic normalization. • The option of a unit-normal quasi-primitive normalization that uses large rational approximate common divisors of mixed number types and intervals to nicely normalize sums. • A polynomial division algorithm tolerant of terms with coefficients that are float zeros or intervals containing 0. • The ability to round or underflow negligible terms while satisfying the inclusion property of interval arithmetic. The package and a more detailed version of this article will be posted at arXiv.org.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信