{"title":"使用机器学习预测评估级别的协作绩效","authors":"S. A. Raza","doi":"10.1109/CAIS.2019.8769578","DOIUrl":null,"url":null,"abstract":"Most of the machine learning-based educational data mining (EDM) studies in university education merely focus on the predication of individual students' performance at institutional/program and course levels. To predict collaborative performance, this study demonstrates the application of a rough set theory-based machine learning technique at the assessment level of a university course. It unveils if-then rules comprising key factors affecting assessment scores and categorizes them into performance classes of ‘Low’, ‘Medium’ and ‘High’. The results are applicable in chalking out strategies related to teaching and student advising to improve academic performance.","PeriodicalId":220129,"journal":{"name":"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Collaborative Performance at Assessment Level using Machine Learning\",\"authors\":\"S. A. Raza\",\"doi\":\"10.1109/CAIS.2019.8769578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the machine learning-based educational data mining (EDM) studies in university education merely focus on the predication of individual students' performance at institutional/program and course levels. To predict collaborative performance, this study demonstrates the application of a rough set theory-based machine learning technique at the assessment level of a university course. It unveils if-then rules comprising key factors affecting assessment scores and categorizes them into performance classes of ‘Low’, ‘Medium’ and ‘High’. The results are applicable in chalking out strategies related to teaching and student advising to improve academic performance.\",\"PeriodicalId\":220129,\"journal\":{\"name\":\"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIS.2019.8769578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIS.2019.8769578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Collaborative Performance at Assessment Level using Machine Learning
Most of the machine learning-based educational data mining (EDM) studies in university education merely focus on the predication of individual students' performance at institutional/program and course levels. To predict collaborative performance, this study demonstrates the application of a rough set theory-based machine learning technique at the assessment level of a university course. It unveils if-then rules comprising key factors affecting assessment scores and categorizes them into performance classes of ‘Low’, ‘Medium’ and ‘High’. The results are applicable in chalking out strategies related to teaching and student advising to improve academic performance.