Emmanuelle Saillard, Koushik Sen, W. Lavrijsen, Costin Iancu
{"title":"最大化通信重叠与动态程序分析","authors":"Emmanuelle Saillard, Koushik Sen, W. Lavrijsen, Costin Iancu","doi":"10.1145/3149457.3149459","DOIUrl":null,"url":null,"abstract":"We present a dynamic program analysis approach to optimize communication overlap in scientific applications. Our tool instruments the code to generate a trace of the application's memory and synchronization behavior. An offline analysis determines the program optimal points for maximal overlap when considering several programming constructs: nonblocking one-sided communication operations, non-blocking collectives and bespoke synchronization patterns and operations. Feedback about possible transformations is presented to the user and the tool can perform the directed transformations, which are supported by a lightweight runtime. The value of our approach comes from: 1) the ability to optimize across boundaries of software modules or libraries, while specializing for the intrinsics of the underlying communication runtime; and 2) providing upper bounds on the expected performance improvements after communication optimizations. We have reduced the time spent in communication by as much as 64% for several applications that were already aggressively optimized for overlap; this indicates that manual optimizations leave untapped performance. Although demonstrated mainly for the UPC programming language, the methodology can be easily adapted to any other communication and synchronization API.","PeriodicalId":314778,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximizing Communication Overlap with Dynamic Program Analysis\",\"authors\":\"Emmanuelle Saillard, Koushik Sen, W. Lavrijsen, Costin Iancu\",\"doi\":\"10.1145/3149457.3149459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a dynamic program analysis approach to optimize communication overlap in scientific applications. Our tool instruments the code to generate a trace of the application's memory and synchronization behavior. An offline analysis determines the program optimal points for maximal overlap when considering several programming constructs: nonblocking one-sided communication operations, non-blocking collectives and bespoke synchronization patterns and operations. Feedback about possible transformations is presented to the user and the tool can perform the directed transformations, which are supported by a lightweight runtime. The value of our approach comes from: 1) the ability to optimize across boundaries of software modules or libraries, while specializing for the intrinsics of the underlying communication runtime; and 2) providing upper bounds on the expected performance improvements after communication optimizations. We have reduced the time spent in communication by as much as 64% for several applications that were already aggressively optimized for overlap; this indicates that manual optimizations leave untapped performance. Although demonstrated mainly for the UPC programming language, the methodology can be easily adapted to any other communication and synchronization API.\",\"PeriodicalId\":314778,\"journal\":{\"name\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3149457.3149459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149457.3149459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximizing Communication Overlap with Dynamic Program Analysis
We present a dynamic program analysis approach to optimize communication overlap in scientific applications. Our tool instruments the code to generate a trace of the application's memory and synchronization behavior. An offline analysis determines the program optimal points for maximal overlap when considering several programming constructs: nonblocking one-sided communication operations, non-blocking collectives and bespoke synchronization patterns and operations. Feedback about possible transformations is presented to the user and the tool can perform the directed transformations, which are supported by a lightweight runtime. The value of our approach comes from: 1) the ability to optimize across boundaries of software modules or libraries, while specializing for the intrinsics of the underlying communication runtime; and 2) providing upper bounds on the expected performance improvements after communication optimizations. We have reduced the time spent in communication by as much as 64% for several applications that were already aggressively optimized for overlap; this indicates that manual optimizations leave untapped performance. Although demonstrated mainly for the UPC programming language, the methodology can be easily adapted to any other communication and synchronization API.