进化细胞自动机盆景

D. Ashlock, Carolyn Pugh
{"title":"进化细胞自动机盆景","authors":"D. Ashlock, Carolyn Pugh","doi":"10.1109/CEC.2013.6557587","DOIUrl":null,"url":null,"abstract":"Cellular automata are known to be capable of Turing-complete computation and yet “programming” them to do particular tasks can be quite daunting. In this paper we use single parent crossover as a means of transferring information between successive evolving populations to create rules for cellular automata that have proscribed shapes. The proscription of regions where the automata are permitted to grow is the reason they are called bonsai automata. This work follows earlier work on apoptotic cellular automata that simply exhibit self-limited growth. The correct choice of single parents permits enormous improvement in the performance of evolutionary algorithms searching for automata that satisfy particular bonsai templates. In this study, we demonstrate that single parent techniques make meeting shape constraints on the growth of CAs possible at all in some cases. This study also introduces range niche specialization to control problems with the cloning of ancestors used for single parent crossover in an evolving population. This study demonstrates that different bonsai shapes have highly variable difficulty. It is also shown that automata evolved to satisfy one bonsai template may be needed to enable, via single parent crossover, solutions for another template. The use of bonsai techniques yields many automata not found during studies of apoptotic automata demonstrating that the technique encourages exploration of different parts of the fitness landscape.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolutionary cellular automata bonsai\",\"authors\":\"D. Ashlock, Carolyn Pugh\",\"doi\":\"10.1109/CEC.2013.6557587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular automata are known to be capable of Turing-complete computation and yet “programming” them to do particular tasks can be quite daunting. In this paper we use single parent crossover as a means of transferring information between successive evolving populations to create rules for cellular automata that have proscribed shapes. The proscription of regions where the automata are permitted to grow is the reason they are called bonsai automata. This work follows earlier work on apoptotic cellular automata that simply exhibit self-limited growth. The correct choice of single parents permits enormous improvement in the performance of evolutionary algorithms searching for automata that satisfy particular bonsai templates. In this study, we demonstrate that single parent techniques make meeting shape constraints on the growth of CAs possible at all in some cases. This study also introduces range niche specialization to control problems with the cloning of ancestors used for single parent crossover in an evolving population. This study demonstrates that different bonsai shapes have highly variable difficulty. It is also shown that automata evolved to satisfy one bonsai template may be needed to enable, via single parent crossover, solutions for another template. The use of bonsai techniques yields many automata not found during studies of apoptotic automata demonstrating that the technique encourages exploration of different parts of the fitness landscape.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

众所周知,元胞自动机能够进行图灵完全计算,但“编程”它们来完成特定的任务可能相当令人生畏。在本文中,我们使用单亲交叉作为在连续进化种群之间传递信息的手段,为具有禁止形状的元胞自动机创建规则。禁止允许自动机生长的区域是它们被称为盆景自动机的原因。这项工作是在早期对凋亡细胞自动机的研究之后进行的,这些自动机只是表现出自我限制的生长。单亲父母的正确选择可以极大地改善进化算法的性能,以搜索满足特定盆景模板的自动机。在这项研究中,我们证明了在某些情况下,单亲技术可以满足CAs生长的形状限制。本研究还引入了范围生态位专门化,以控制进化群体中用于单亲杂交的祖先克隆问题。本研究表明,不同形状的盆景难度差异很大。它还表明,为了满足一个盆景模板而进化的自动机可能需要通过单亲交叉来实现另一个模板的解决方案。盆景技术的使用产生了许多在凋亡自动机研究中没有发现的自动机,这表明该技术鼓励探索健身景观的不同部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary cellular automata bonsai
Cellular automata are known to be capable of Turing-complete computation and yet “programming” them to do particular tasks can be quite daunting. In this paper we use single parent crossover as a means of transferring information between successive evolving populations to create rules for cellular automata that have proscribed shapes. The proscription of regions where the automata are permitted to grow is the reason they are called bonsai automata. This work follows earlier work on apoptotic cellular automata that simply exhibit self-limited growth. The correct choice of single parents permits enormous improvement in the performance of evolutionary algorithms searching for automata that satisfy particular bonsai templates. In this study, we demonstrate that single parent techniques make meeting shape constraints on the growth of CAs possible at all in some cases. This study also introduces range niche specialization to control problems with the cloning of ancestors used for single parent crossover in an evolving population. This study demonstrates that different bonsai shapes have highly variable difficulty. It is also shown that automata evolved to satisfy one bonsai template may be needed to enable, via single parent crossover, solutions for another template. The use of bonsai techniques yields many automata not found during studies of apoptotic automata demonstrating that the technique encourages exploration of different parts of the fitness landscape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信