作业车间调度的迭代仿真与优化方法

Ketki Kulkarni, J. Venkateswaran
{"title":"作业车间调度的迭代仿真与优化方法","authors":"Ketki Kulkarni, J. Venkateswaran","doi":"10.1109/WSC.2014.7020013","DOIUrl":null,"url":null,"abstract":"In this paper, we present an iterative scheme integrating simulation with an optimization model, for solving complex problems, viz., job shop scheduling. The classical job shop scheduling problem which is NP-Hard, has often been modelled as Mixed-Integer Programming (MIP) model and solved using exact algorithms (for example, branch-and-bound and branch-and-cut) or using meta-heuristics (for example, Genetic Algorithm, Particle Swarm Optimization and Simulated Annealing). In the proposed Iterative Simulation-Optimization (ISO) approach, we use a modified formulation of the scheduling problem where the operational aspects of the job shop are captured only in the simulation model. Two new decision variables, controller delays and queue priorities are used to introduce feedback constraints, that help exchange information between the two models. The proposed method is tested using benchmark instances from the OR library. The results indicate that the method gives near optimal schedules in a reasonable computational time.","PeriodicalId":446873,"journal":{"name":"Proceedings of the Winter Simulation Conference 2014","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Iterative Simulation and Optimization approach for job shop scheduling\",\"authors\":\"Ketki Kulkarni, J. Venkateswaran\",\"doi\":\"10.1109/WSC.2014.7020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an iterative scheme integrating simulation with an optimization model, for solving complex problems, viz., job shop scheduling. The classical job shop scheduling problem which is NP-Hard, has often been modelled as Mixed-Integer Programming (MIP) model and solved using exact algorithms (for example, branch-and-bound and branch-and-cut) or using meta-heuristics (for example, Genetic Algorithm, Particle Swarm Optimization and Simulated Annealing). In the proposed Iterative Simulation-Optimization (ISO) approach, we use a modified formulation of the scheduling problem where the operational aspects of the job shop are captured only in the simulation model. Two new decision variables, controller delays and queue priorities are used to introduce feedback constraints, that help exchange information between the two models. The proposed method is tested using benchmark instances from the OR library. The results indicate that the method gives near optimal schedules in a reasonable computational time.\",\"PeriodicalId\":446873,\"journal\":{\"name\":\"Proceedings of the Winter Simulation Conference 2014\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Winter Simulation Conference 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2014.7020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Winter Simulation Conference 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2014.7020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种将仿真与优化模型相结合的迭代方案,用于求解作业车间调度等复杂问题。经典的NP-Hard作业车间调度问题通常被建模为混合整数规划(MIP)模型,并使用精确算法(如分支定界和分支切断)或元启发式算法(如遗传算法、粒子群优化和模拟退火)来求解。在提出的迭代模拟优化(ISO)方法中,我们使用了调度问题的修改公式,其中作业车间的操作方面仅在仿真模型中被捕获。两个新的决策变量,控制器延迟和队列优先级被用来引入反馈约束,这有助于在两个模型之间交换信息。使用OR库中的基准实例对所提出的方法进行了测试。结果表明,该方法在合理的计算时间内给出了接近最优的调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative Simulation and Optimization approach for job shop scheduling
In this paper, we present an iterative scheme integrating simulation with an optimization model, for solving complex problems, viz., job shop scheduling. The classical job shop scheduling problem which is NP-Hard, has often been modelled as Mixed-Integer Programming (MIP) model and solved using exact algorithms (for example, branch-and-bound and branch-and-cut) or using meta-heuristics (for example, Genetic Algorithm, Particle Swarm Optimization and Simulated Annealing). In the proposed Iterative Simulation-Optimization (ISO) approach, we use a modified formulation of the scheduling problem where the operational aspects of the job shop are captured only in the simulation model. Two new decision variables, controller delays and queue priorities are used to introduce feedback constraints, that help exchange information between the two models. The proposed method is tested using benchmark instances from the OR library. The results indicate that the method gives near optimal schedules in a reasonable computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信