俄语会话问题生成

O. Makhnytkina, A. Matveev, Aleksei Svischev, Polina Korobova, Dmitrii A. Zubok, Nikita Mamaev, Artem Tchirkovskii
{"title":"俄语会话问题生成","authors":"O. Makhnytkina, A. Matveev, Aleksei Svischev, Polina Korobova, Dmitrii A. Zubok, Nikita Mamaev, Artem Tchirkovskii","doi":"10.23919/fruct49677.2020.9211056","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss possibilities of automatic generation of conversational questions in Russian. We are exploring the possibility of using “A Conversational Question Answering Challenge” (CoQA) dataset translated into Russian for training an encoder-decoder model. We review several techniques for improving the quality of questions generated in the Russian language. The results are evaluated manually. Combining a neural network-based approach with a rules-based approach, we develop a system for automatic examination of university students.","PeriodicalId":149674,"journal":{"name":"2020 27th Conference of Open Innovations Association (FRUCT)","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversational Question Generation in Russian\",\"authors\":\"O. Makhnytkina, A. Matveev, Aleksei Svischev, Polina Korobova, Dmitrii A. Zubok, Nikita Mamaev, Artem Tchirkovskii\",\"doi\":\"10.23919/fruct49677.2020.9211056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss possibilities of automatic generation of conversational questions in Russian. We are exploring the possibility of using “A Conversational Question Answering Challenge” (CoQA) dataset translated into Russian for training an encoder-decoder model. We review several techniques for improving the quality of questions generated in the Russian language. The results are evaluated manually. Combining a neural network-based approach with a rules-based approach, we develop a system for automatic examination of university students.\",\"PeriodicalId\":149674,\"journal\":{\"name\":\"2020 27th Conference of Open Innovations Association (FRUCT)\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 27th Conference of Open Innovations Association (FRUCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fruct49677.2020.9211056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th Conference of Open Innovations Association (FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fruct49677.2020.9211056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了俄语会话问题自动生成的可能性。我们正在探索使用翻译成俄语的“会话问答挑战”(CoQA)数据集来训练编码器-解码器模型的可能性。我们回顾了几种提高俄语问题质量的技术。结果是手动评估的。将基于神经网络的方法与基于规则的方法相结合,开发了一个大学生自动考试系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conversational Question Generation in Russian
In this paper, we discuss possibilities of automatic generation of conversational questions in Russian. We are exploring the possibility of using “A Conversational Question Answering Challenge” (CoQA) dataset translated into Russian for training an encoder-decoder model. We review several techniques for improving the quality of questions generated in the Russian language. The results are evaluated manually. Combining a neural network-based approach with a rules-based approach, we develop a system for automatic examination of university students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信