无监督谱降维方法的广义核框架

Diego Hernán Peluffo-Ordóñez, J. Lee, M. Verleysen
{"title":"无监督谱降维方法的广义核框架","authors":"Diego Hernán Peluffo-Ordóñez, J. Lee, M. Verleysen","doi":"10.1109/CIDM.2014.7008664","DOIUrl":null,"url":null,"abstract":"This work introduces a generalized kernel perspective for spectral dimensionality reduction approaches. Firstly, an elegant matrix view of kernel principal component analysis (PCA) is described. We show the relationship between kernel PCA, and conventional PCA using a parametric distance. Secondly, we introduce a weighted kernel PCA framework followed from least-squares support vector machines (LS-SVM). This approach starts with a latent variable that allows to write a relaxed LS-SVM problem. Such a problem is addressed by a primal-dual formulation. As a result, we provide kernel alternatives to spectral methods for dimensionality reduction such as multidimensional scaling, locally linear embedding, and laplacian eigenmaps; as well as a versatile framework to explain weighted PCA approaches. Experimentally, we prove that the incorporation of a SVM model improves the performance of kernel PCA.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Generalized kernel framework for unsupervised spectral methods of dimensionality reduction\",\"authors\":\"Diego Hernán Peluffo-Ordóñez, J. Lee, M. Verleysen\",\"doi\":\"10.1109/CIDM.2014.7008664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a generalized kernel perspective for spectral dimensionality reduction approaches. Firstly, an elegant matrix view of kernel principal component analysis (PCA) is described. We show the relationship between kernel PCA, and conventional PCA using a parametric distance. Secondly, we introduce a weighted kernel PCA framework followed from least-squares support vector machines (LS-SVM). This approach starts with a latent variable that allows to write a relaxed LS-SVM problem. Such a problem is addressed by a primal-dual formulation. As a result, we provide kernel alternatives to spectral methods for dimensionality reduction such as multidimensional scaling, locally linear embedding, and laplacian eigenmaps; as well as a versatile framework to explain weighted PCA approaches. Experimentally, we prove that the incorporation of a SVM model improves the performance of kernel PCA.\",\"PeriodicalId\":117542,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2014.7008664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

这项工作介绍了一个广义核视角的光谱降维方法。首先,描述了核主成分分析(PCA)的矩阵观。我们使用参数距离来展示核主成分分析和常规主成分分析之间的关系。其次,在最小二乘支持向量机(LS-SVM)的基础上引入加权核主成分分析框架。这种方法从一个潜在变量开始,它允许编写一个宽松的LS-SVM问题。这样的问题是由一个原始对偶公式来解决的。因此,我们提供了核替代谱方法降维,如多维尺度,局部线性嵌入和拉普拉斯特征映射;以及解释加权PCA方法的通用框架。实验证明,加入支持向量机模型可以提高核主成分分析的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized kernel framework for unsupervised spectral methods of dimensionality reduction
This work introduces a generalized kernel perspective for spectral dimensionality reduction approaches. Firstly, an elegant matrix view of kernel principal component analysis (PCA) is described. We show the relationship between kernel PCA, and conventional PCA using a parametric distance. Secondly, we introduce a weighted kernel PCA framework followed from least-squares support vector machines (LS-SVM). This approach starts with a latent variable that allows to write a relaxed LS-SVM problem. Such a problem is addressed by a primal-dual formulation. As a result, we provide kernel alternatives to spectral methods for dimensionality reduction such as multidimensional scaling, locally linear embedding, and laplacian eigenmaps; as well as a versatile framework to explain weighted PCA approaches. Experimentally, we prove that the incorporation of a SVM model improves the performance of kernel PCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信