具有等价关系的一元负片段具有有限模型性质

Daniel Danielski, Emanuel Kieronski
{"title":"具有等价关系的一元负片段具有有限模型性质","authors":"Daniel Danielski, Emanuel Kieronski","doi":"10.1145/3209108.3209205","DOIUrl":null,"url":null,"abstract":"We consider an extension of the unary negation fragment of first-order logic in which arbitrarily many binary symbols may be required to be interpreted as equivalence relations. We show that this extension has the finite model property. More specifically, we show that every satisfiable formula has a model of at most doubly exponential size. We argue that the satisfiability (= finite satisfiability) problem for this logic is 2-ExpTime-complete. We also transfer our results to a restricted variant of the guarded negation fragment with equivalence relations.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Unary negation fragment with equivalence relations has the finite model property\",\"authors\":\"Daniel Danielski, Emanuel Kieronski\",\"doi\":\"10.1145/3209108.3209205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an extension of the unary negation fragment of first-order logic in which arbitrarily many binary symbols may be required to be interpreted as equivalence relations. We show that this extension has the finite model property. More specifically, we show that every satisfiable formula has a model of at most doubly exponential size. We argue that the satisfiability (= finite satisfiability) problem for this logic is 2-ExpTime-complete. We also transfer our results to a restricted variant of the guarded negation fragment with equivalence relations.\",\"PeriodicalId\":389131,\"journal\":{\"name\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209108.3209205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

考虑一阶逻辑一元否定片段的扩展,其中任意多个二元符号可能需要被解释为等价关系。我们证明了这个扩展具有有限模型性质。更具体地说,我们证明了每一个可满足的公式都有一个至多双指数大小的模型。我们论证了该逻辑的可满足性(=有限可满足性)问题是2-ExpTime-complete的。我们还将我们的结果转化为具有等价关系的保护否定片段的限制变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unary negation fragment with equivalence relations has the finite model property
We consider an extension of the unary negation fragment of first-order logic in which arbitrarily many binary symbols may be required to be interpreted as equivalence relations. We show that this extension has the finite model property. More specifically, we show that every satisfiable formula has a model of at most doubly exponential size. We argue that the satisfiability (= finite satisfiability) problem for this logic is 2-ExpTime-complete. We also transfer our results to a restricted variant of the guarded negation fragment with equivalence relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信