多通道阈值与感知字典

R. Gribonval, B. Mailhé, H. Rauhut, K. Schnass, P. Vandergheynst
{"title":"多通道阈值与感知字典","authors":"R. Gribonval, B. Mailhé, H. Rauhut, K. Schnass, P. Vandergheynst","doi":"10.1109/CAMSAP.2007.4497983","DOIUrl":null,"url":null,"abstract":"This paper shows introduces the use sensing dictionaries for p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We do both a worst case and average case recovery analyses of this algorithm and show that the latter results in much weaker conditions on the dictionary, sensing dictionary pair. We then do numerical simulations to confirm our theoretical findings, showing that p-thresholding is an interesting low complexity alternative to simultaneous greedy or convex relaxation algorithms for processing sparse multichannel signals with balanced coefficients, and finally point a connection to compressed sensing exploiting the additional freedom in designing the sensing dictionary.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multichannel Thresholding with Sensing Dictionaries\",\"authors\":\"R. Gribonval, B. Mailhé, H. Rauhut, K. Schnass, P. Vandergheynst\",\"doi\":\"10.1109/CAMSAP.2007.4497983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows introduces the use sensing dictionaries for p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We do both a worst case and average case recovery analyses of this algorithm and show that the latter results in much weaker conditions on the dictionary, sensing dictionary pair. We then do numerical simulations to confirm our theoretical findings, showing that p-thresholding is an interesting low complexity alternative to simultaneous greedy or convex relaxation algorithms for processing sparse multichannel signals with balanced coefficients, and finally point a connection to compressed sensing exploiting the additional freedom in designing the sensing dictionary.\",\"PeriodicalId\":220687,\"journal\":{\"name\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2007.4497983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4497983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了用感知字典进行p阈值分割的方法,这是一种在冗余字典上计算多通道信号同时稀疏逼近的算法。我们对该算法进行了最坏情况和平均情况的恢复分析,并表明后者导致字典上的条件弱得多,即感知字典对。然后,我们进行数值模拟来证实我们的理论发现,表明p阈值是一种有趣的低复杂性替代同时贪婪或凸松弛算法,用于处理具有平衡系数的稀疏多通道信号,最后指出了与压缩感知的联系,利用了设计感知字典的额外自由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multichannel Thresholding with Sensing Dictionaries
This paper shows introduces the use sensing dictionaries for p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We do both a worst case and average case recovery analyses of this algorithm and show that the latter results in much weaker conditions on the dictionary, sensing dictionary pair. We then do numerical simulations to confirm our theoretical findings, showing that p-thresholding is an interesting low complexity alternative to simultaneous greedy or convex relaxation algorithms for processing sparse multichannel signals with balanced coefficients, and finally point a connection to compressed sensing exploiting the additional freedom in designing the sensing dictionary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信