自由曲面快速伺服超精密加工中刀具轨迹生成的自适应点设计算法

cai zhaohan, Li Jinpeng, Xie Yongjun, mao xianglong
{"title":"自由曲面快速伺服超精密加工中刀具轨迹生成的自适应点设计算法","authors":"cai zhaohan, Li Jinpeng, Xie Yongjun, mao xianglong","doi":"10.1117/12.2666675","DOIUrl":null,"url":null,"abstract":"Compared with traditional coaxial multi-reflection imaging systems, the off-axis imaging system using optical freeform has many advantages, including high design freedom, small optical system size and high energy utilization. Nowadays, optical freeform surfaces have been widely utilized in imaging and non-imaging optical systems. But correspondingly, freeform machining is more difficult than spherical and aspherical optical reflectors. In the turning process, toolpath plays a critical role because it will determine the accuracy of the machined surface. The conventional methods to generate toolpath include constant-angle method, constant-arc-length method and the combination of constant-angle and constant-arc-length methods. This article proposes a new method based on an Adaptive Point Design Algorithm (APDA) to generate a series of cutting points. It will generate the cutter’s toolpath based on the tangential height changes of the ideal surface. Through the simulation, the algorithm is verified that it can achieve the same accuracy when reducing the amount of data by about 40%, compared with the traditional constant-angle method. This makes freeform machining faster and provides the basis for precision machining of large-aperture freeform surfaces.","PeriodicalId":221780,"journal":{"name":"Ninth Symposium on Novel Photoelectronic Detection Technology and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive point design algorithm to generate toolpath in fast tool servo ultra-precision machining of freeform surface\",\"authors\":\"cai zhaohan, Li Jinpeng, Xie Yongjun, mao xianglong\",\"doi\":\"10.1117/12.2666675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with traditional coaxial multi-reflection imaging systems, the off-axis imaging system using optical freeform has many advantages, including high design freedom, small optical system size and high energy utilization. Nowadays, optical freeform surfaces have been widely utilized in imaging and non-imaging optical systems. But correspondingly, freeform machining is more difficult than spherical and aspherical optical reflectors. In the turning process, toolpath plays a critical role because it will determine the accuracy of the machined surface. The conventional methods to generate toolpath include constant-angle method, constant-arc-length method and the combination of constant-angle and constant-arc-length methods. This article proposes a new method based on an Adaptive Point Design Algorithm (APDA) to generate a series of cutting points. It will generate the cutter’s toolpath based on the tangential height changes of the ideal surface. Through the simulation, the algorithm is verified that it can achieve the same accuracy when reducing the amount of data by about 40%, compared with the traditional constant-angle method. This makes freeform machining faster and provides the basis for precision machining of large-aperture freeform surfaces.\",\"PeriodicalId\":221780,\"journal\":{\"name\":\"Ninth Symposium on Novel Photoelectronic Detection Technology and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ninth Symposium on Novel Photoelectronic Detection Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2666675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ninth Symposium on Novel Photoelectronic Detection Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2666675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive point design algorithm to generate toolpath in fast tool servo ultra-precision machining of freeform surface
Compared with traditional coaxial multi-reflection imaging systems, the off-axis imaging system using optical freeform has many advantages, including high design freedom, small optical system size and high energy utilization. Nowadays, optical freeform surfaces have been widely utilized in imaging and non-imaging optical systems. But correspondingly, freeform machining is more difficult than spherical and aspherical optical reflectors. In the turning process, toolpath plays a critical role because it will determine the accuracy of the machined surface. The conventional methods to generate toolpath include constant-angle method, constant-arc-length method and the combination of constant-angle and constant-arc-length methods. This article proposes a new method based on an Adaptive Point Design Algorithm (APDA) to generate a series of cutting points. It will generate the cutter’s toolpath based on the tangential height changes of the ideal surface. Through the simulation, the algorithm is verified that it can achieve the same accuracy when reducing the amount of data by about 40%, compared with the traditional constant-angle method. This makes freeform machining faster and provides the basis for precision machining of large-aperture freeform surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信