{"title":"在社交物联网中使用大数据分析定义人类行为","authors":"Awais Ahmad, M. Rathore, Anand Paul, Su-Ryun Rho","doi":"10.1109/AINA.2016.104","DOIUrl":null,"url":null,"abstract":"As we delve into the Internet of Things (IoT), we are witnessing the intensive interaction and heterogeneous communication among different devices over the Internet. Consequently, these devices generate a massive volume of Big Data. The potential of these data has been analyzed by the complex network theory, describing a specialized branch, known as 'Human Dynamics.' The potential of these data has been analyzed by the complex network theory, describing a specialized branch, known as 'Human Dynamics.' In this extension, the goal is to describe human behavior in the social area at real-time. These objectives are starting to be practicable through the quantity of data provided by smartphones, social network, and smart cities. These make the environment more intelligent and offer an intelligent space to sense our activities or actions, and the evolution of the ecosystem. To address the aforementioned needs, this paper presents the concept of 'defining human behavior' using Big Data in SIoT by proposing system architecture that processes and analyzes big data in real-time. The proposed architecture consists of three operational domains, i.e., object, SIoT server, application domain. Data from object domain is aggregated at SIoT server domain, where the data is efficiently store and process and intelligently respond to the outer stimuli. The proposed system architecture focuses on the analysis the ecosystem provided by Smart Cities, wearable devices (e.g., body area network) and Big Data to determine the human behaviors as well as human dynamics. Furthermore, the feasibility and efficiency of the proposed system are implemented on Hadoop single node setup on UBUNTU 14.04 LTS coreTMi5 machine with 3.2 GHz processor and 4 GB memory.","PeriodicalId":438655,"journal":{"name":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Defining Human Behaviors Using Big Data Analytics in Social Internet of Things\",\"authors\":\"Awais Ahmad, M. Rathore, Anand Paul, Su-Ryun Rho\",\"doi\":\"10.1109/AINA.2016.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As we delve into the Internet of Things (IoT), we are witnessing the intensive interaction and heterogeneous communication among different devices over the Internet. Consequently, these devices generate a massive volume of Big Data. The potential of these data has been analyzed by the complex network theory, describing a specialized branch, known as 'Human Dynamics.' The potential of these data has been analyzed by the complex network theory, describing a specialized branch, known as 'Human Dynamics.' In this extension, the goal is to describe human behavior in the social area at real-time. These objectives are starting to be practicable through the quantity of data provided by smartphones, social network, and smart cities. These make the environment more intelligent and offer an intelligent space to sense our activities or actions, and the evolution of the ecosystem. To address the aforementioned needs, this paper presents the concept of 'defining human behavior' using Big Data in SIoT by proposing system architecture that processes and analyzes big data in real-time. The proposed architecture consists of three operational domains, i.e., object, SIoT server, application domain. Data from object domain is aggregated at SIoT server domain, where the data is efficiently store and process and intelligently respond to the outer stimuli. The proposed system architecture focuses on the analysis the ecosystem provided by Smart Cities, wearable devices (e.g., body area network) and Big Data to determine the human behaviors as well as human dynamics. Furthermore, the feasibility and efficiency of the proposed system are implemented on Hadoop single node setup on UBUNTU 14.04 LTS coreTMi5 machine with 3.2 GHz processor and 4 GB memory.\",\"PeriodicalId\":438655,\"journal\":{\"name\":\"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINA.2016.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2016.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Defining Human Behaviors Using Big Data Analytics in Social Internet of Things
As we delve into the Internet of Things (IoT), we are witnessing the intensive interaction and heterogeneous communication among different devices over the Internet. Consequently, these devices generate a massive volume of Big Data. The potential of these data has been analyzed by the complex network theory, describing a specialized branch, known as 'Human Dynamics.' The potential of these data has been analyzed by the complex network theory, describing a specialized branch, known as 'Human Dynamics.' In this extension, the goal is to describe human behavior in the social area at real-time. These objectives are starting to be practicable through the quantity of data provided by smartphones, social network, and smart cities. These make the environment more intelligent and offer an intelligent space to sense our activities or actions, and the evolution of the ecosystem. To address the aforementioned needs, this paper presents the concept of 'defining human behavior' using Big Data in SIoT by proposing system architecture that processes and analyzes big data in real-time. The proposed architecture consists of three operational domains, i.e., object, SIoT server, application domain. Data from object domain is aggregated at SIoT server domain, where the data is efficiently store and process and intelligently respond to the outer stimuli. The proposed system architecture focuses on the analysis the ecosystem provided by Smart Cities, wearable devices (e.g., body area network) and Big Data to determine the human behaviors as well as human dynamics. Furthermore, the feasibility and efficiency of the proposed system are implemented on Hadoop single node setup on UBUNTU 14.04 LTS coreTMi5 machine with 3.2 GHz processor and 4 GB memory.