机器学习识别影响人类收缩压的因素

Suejit Pechprasarn, Chayanisa Sukkasem, Suvicha Sasivimolkul, Phitsini Suvarnaphaet
{"title":"机器学习识别影响人类收缩压的因素","authors":"Suejit Pechprasarn, Chayanisa Sukkasem, Suvicha Sasivimolkul, Phitsini Suvarnaphaet","doi":"10.1109/BMEiCON47515.2019.8990356","DOIUrl":null,"url":null,"abstract":"This paper employs different machine learning algorithms to perform a regression study to predict systolic blood pressure (SBP) levels. We used blood pressure dataset of Dr. Raymond Lam, GlaxoSmithKline, Toronto, Ontario, Canada in this study. There are 500 patients in the dataset, 250 have normal blood pressure level and the other 250 have hypertension. There are 500 predictors in the dataset. 17 predictors are patients’ non-genomic information and the rest are 483 genetic markers. In this paper, we have selected only the following 13 factors as predictors in this study to reduce the complexity of the problem. The predictors included in this study are ’gender’, ’married’, ’smoke’, ’exercise level’, ’age’, ’weight’, ’height’, ’alcohol consumption’, ’treatment for hypertension’, ’stress level’, ’salt intake level’, ’income’ and ’education level’. The regression model that gave the lowest root mean square error in SBP of 25.68 for the 13 predictors is Gaussian Process Regression using the squared exponential function in the regression model. Although the RMS value was quite high, it was sufficient to draw some conclusions and identify the factors that do affect the SBP level.","PeriodicalId":213939,"journal":{"name":"2019 12th Biomedical Engineering International Conference (BMEiCON)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning to identify factors that affect Human Systolic Blood Pressure\",\"authors\":\"Suejit Pechprasarn, Chayanisa Sukkasem, Suvicha Sasivimolkul, Phitsini Suvarnaphaet\",\"doi\":\"10.1109/BMEiCON47515.2019.8990356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper employs different machine learning algorithms to perform a regression study to predict systolic blood pressure (SBP) levels. We used blood pressure dataset of Dr. Raymond Lam, GlaxoSmithKline, Toronto, Ontario, Canada in this study. There are 500 patients in the dataset, 250 have normal blood pressure level and the other 250 have hypertension. There are 500 predictors in the dataset. 17 predictors are patients’ non-genomic information and the rest are 483 genetic markers. In this paper, we have selected only the following 13 factors as predictors in this study to reduce the complexity of the problem. The predictors included in this study are ’gender’, ’married’, ’smoke’, ’exercise level’, ’age’, ’weight’, ’height’, ’alcohol consumption’, ’treatment for hypertension’, ’stress level’, ’salt intake level’, ’income’ and ’education level’. The regression model that gave the lowest root mean square error in SBP of 25.68 for the 13 predictors is Gaussian Process Regression using the squared exponential function in the regression model. Although the RMS value was quite high, it was sufficient to draw some conclusions and identify the factors that do affect the SBP level.\",\"PeriodicalId\":213939,\"journal\":{\"name\":\"2019 12th Biomedical Engineering International Conference (BMEiCON)\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th Biomedical Engineering International Conference (BMEiCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEiCON47515.2019.8990356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON47515.2019.8990356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用不同的机器学习算法进行回归研究,以预测收缩压(SBP)水平。我们在这项研究中使用了Raymond Lam博士的血压数据集,葛兰素史克公司,多伦多,安大略省,加拿大。数据集中有500名患者,250名血压正常,250名高血压。数据集中有500个预测因子。17个预测因子为患者的非基因组信息,其余为483个遗传标记。本文仅选取以下13个因素作为本研究的预测因子,以降低问题的复杂性。本研究的预测因子包括“性别”、“已婚”、“吸烟”、“运动水平”、“年龄”、“体重”、“身高”、“饮酒”、“高血压治疗”、“压力水平”、“盐摄入量”、“收入”和“教育水平”。13个预测因子的SBP均方根误差最小(25.68)的回归模型为高斯过程回归,回归模型中采用指数平方函数。虽然均方根值相当高,但这足以得出一些结论,并确定影响收缩压水平的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning to identify factors that affect Human Systolic Blood Pressure
This paper employs different machine learning algorithms to perform a regression study to predict systolic blood pressure (SBP) levels. We used blood pressure dataset of Dr. Raymond Lam, GlaxoSmithKline, Toronto, Ontario, Canada in this study. There are 500 patients in the dataset, 250 have normal blood pressure level and the other 250 have hypertension. There are 500 predictors in the dataset. 17 predictors are patients’ non-genomic information and the rest are 483 genetic markers. In this paper, we have selected only the following 13 factors as predictors in this study to reduce the complexity of the problem. The predictors included in this study are ’gender’, ’married’, ’smoke’, ’exercise level’, ’age’, ’weight’, ’height’, ’alcohol consumption’, ’treatment for hypertension’, ’stress level’, ’salt intake level’, ’income’ and ’education level’. The regression model that gave the lowest root mean square error in SBP of 25.68 for the 13 predictors is Gaussian Process Regression using the squared exponential function in the regression model. Although the RMS value was quite high, it was sufficient to draw some conclusions and identify the factors that do affect the SBP level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信