使用增强数据集的蘑菇可食性自动测定

S. Chawathe
{"title":"使用增强数据集的蘑菇可食性自动测定","authors":"S. Chawathe","doi":"10.1109/aiiot54504.2022.9817321","DOIUrl":null,"url":null,"abstract":"This paper studies methods and datasets for automated classification of mushrooms as edible or poisonous based on easily observable properties such as colors, textures, and dimensions of mushroom parts. The focus is on data-intensive methods that build upon recent work that has led to an augmented database of mushroom features. This dataset is studied in detail with the goal of explicating properties and easing further use of the dataset by others. The merit of the database features for the classification task is quantified using several metrics. Results quantify the accuracy and efficiency of classification using all and only a few of the features.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Determination of Mushroom Edibility Using an Augmented Dataset\",\"authors\":\"S. Chawathe\",\"doi\":\"10.1109/aiiot54504.2022.9817321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies methods and datasets for automated classification of mushrooms as edible or poisonous based on easily observable properties such as colors, textures, and dimensions of mushroom parts. The focus is on data-intensive methods that build upon recent work that has led to an augmented database of mushroom features. This dataset is studied in detail with the goal of explicating properties and easing further use of the dataset by others. The merit of the database features for the classification task is quantified using several metrics. Results quantify the accuracy and efficiency of classification using all and only a few of the features.\",\"PeriodicalId\":409264,\"journal\":{\"name\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aiiot54504.2022.9817321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了基于蘑菇部分的颜色、纹理和尺寸等易于观察的特性,对蘑菇进行可食用或有毒自动分类的方法和数据集。重点是建立在最近的工作基础上的数据密集型方法,这些工作导致了蘑菇特征的增强数据库。对该数据集进行了详细的研究,目的是解释数据集的属性并简化其他人对数据集的进一步使用。数据库特征对分类任务的优点使用几个指标进行量化。结果量化了使用所有或仅使用少数特征的分类的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Determination of Mushroom Edibility Using an Augmented Dataset
This paper studies methods and datasets for automated classification of mushrooms as edible or poisonous based on easily observable properties such as colors, textures, and dimensions of mushroom parts. The focus is on data-intensive methods that build upon recent work that has led to an augmented database of mushroom features. This dataset is studied in detail with the goal of explicating properties and easing further use of the dataset by others. The merit of the database features for the classification task is quantified using several metrics. Results quantify the accuracy and efficiency of classification using all and only a few of the features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信