使用机器学习建模索赔经验和报告延迟定价和预订

Louis Rossouw, Ronald Richman
{"title":"使用机器学习建模索赔经验和报告延迟定价和预订","authors":"Louis Rossouw, Ronald Richman","doi":"10.2139/ssrn.3465424","DOIUrl":null,"url":null,"abstract":"In this paper we review existing modelling approaches for analysing claims experience in the presence of reporting delays, reviewing the formulation of mortality incidence models such as GLMs. We then show how these approaches have traditionally been adjusted for late reporting of claims using either the IBNR approach or the more recent EBNER approach. We then go on to introduce a new model formulation that combines a model for late reported claims with a model for mortality incidence into a single model formulation. We then illustrate the use and performance of the traditional and the combined model formulations on data from a multinational reinsurer. We show how GLMs, lasso regression, gradient boosted trees and deep learning can be applied to the new formulation to produce results of superior accuracy compared to the traditional approaches.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Machine Learning to Model Claims Experience and Reporting Delays for Pricing and Reserving\",\"authors\":\"Louis Rossouw, Ronald Richman\",\"doi\":\"10.2139/ssrn.3465424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we review existing modelling approaches for analysing claims experience in the presence of reporting delays, reviewing the formulation of mortality incidence models such as GLMs. We then show how these approaches have traditionally been adjusted for late reporting of claims using either the IBNR approach or the more recent EBNER approach. We then go on to introduce a new model formulation that combines a model for late reported claims with a model for mortality incidence into a single model formulation. We then illustrate the use and performance of the traditional and the combined model formulations on data from a multinational reinsurer. We show how GLMs, lasso regression, gradient boosted trees and deep learning can be applied to the new formulation to produce results of superior accuracy compared to the traditional approaches.\",\"PeriodicalId\":406435,\"journal\":{\"name\":\"CompSciRN: Other Machine Learning (Topic)\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Other Machine Learning (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3465424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3465424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们回顾了现有的建模方法,用于分析报告延迟情况下的索赔经验,审查了死亡率发生率模型(如glm)的制定。然后,我们展示了如何使用IBNR方法或最近的EBNER方法对这些方法进行调整,以适应索赔的后期报告。然后,我们继续介绍一种新的模型公式,将后期报告索赔的模型与死亡率模型结合到一个单一的模型公式中。然后,我们举例说明了传统模型和组合模型在跨国再保险公司数据上的使用和性能。我们展示了如何将glm、套索回归、梯度增强树和深度学习应用于新公式,以产生比传统方法更高精度的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Machine Learning to Model Claims Experience and Reporting Delays for Pricing and Reserving
In this paper we review existing modelling approaches for analysing claims experience in the presence of reporting delays, reviewing the formulation of mortality incidence models such as GLMs. We then show how these approaches have traditionally been adjusted for late reporting of claims using either the IBNR approach or the more recent EBNER approach. We then go on to introduce a new model formulation that combines a model for late reported claims with a model for mortality incidence into a single model formulation. We then illustrate the use and performance of the traditional and the combined model formulations on data from a multinational reinsurer. We show how GLMs, lasso regression, gradient boosted trees and deep learning can be applied to the new formulation to produce results of superior accuracy compared to the traditional approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信