{"title":"SWaT:用于ICS安全研究和培训的水处理试验台","authors":"A. Mathur, Nils Ole Tippenhauer","doi":"10.1109/CySWater.2016.7469060","DOIUrl":null,"url":null,"abstract":"This paper presents the SWaT testbed, a modern industrial control system (ICS) for security research and training. SWaT is currently in use to (a) understand the impact of cyber and physical attacks on a water treatment system, (b) assess the effectiveness of attack detection algorithms, (c) assess the effectiveness of defense mechanisms when the system is under attack, and (d) understand the cascading effects of failures in one ICS on another dependent ICS. SWaT consists of a 6-stage water treatment process, each stage is autonomously controlled by a local PLC. The local fieldbus communications between sensors, actuators, and PLCs is realized through alternative wired and wireless channels. While the experience with the testbed indicates its value in conducting research in an active and realistic environment, it also points to design limitations that make it difficult for system identification and attack detection in some experiments.","PeriodicalId":122308,"journal":{"name":"2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"360","resultStr":"{\"title\":\"SWaT: a water treatment testbed for research and training on ICS security\",\"authors\":\"A. Mathur, Nils Ole Tippenhauer\",\"doi\":\"10.1109/CySWater.2016.7469060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the SWaT testbed, a modern industrial control system (ICS) for security research and training. SWaT is currently in use to (a) understand the impact of cyber and physical attacks on a water treatment system, (b) assess the effectiveness of attack detection algorithms, (c) assess the effectiveness of defense mechanisms when the system is under attack, and (d) understand the cascading effects of failures in one ICS on another dependent ICS. SWaT consists of a 6-stage water treatment process, each stage is autonomously controlled by a local PLC. The local fieldbus communications between sensors, actuators, and PLCs is realized through alternative wired and wireless channels. While the experience with the testbed indicates its value in conducting research in an active and realistic environment, it also points to design limitations that make it difficult for system identification and attack detection in some experiments.\",\"PeriodicalId\":122308,\"journal\":{\"name\":\"2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"360\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CySWater.2016.7469060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CySWater.2016.7469060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SWaT: a water treatment testbed for research and training on ICS security
This paper presents the SWaT testbed, a modern industrial control system (ICS) for security research and training. SWaT is currently in use to (a) understand the impact of cyber and physical attacks on a water treatment system, (b) assess the effectiveness of attack detection algorithms, (c) assess the effectiveness of defense mechanisms when the system is under attack, and (d) understand the cascading effects of failures in one ICS on another dependent ICS. SWaT consists of a 6-stage water treatment process, each stage is autonomously controlled by a local PLC. The local fieldbus communications between sensors, actuators, and PLCs is realized through alternative wired and wireless channels. While the experience with the testbed indicates its value in conducting research in an active and realistic environment, it also points to design limitations that make it difficult for system identification and attack detection in some experiments.