用支持向量机和文本处理表示细胞线条

I. Carrera, I. Dutra, E. Tejera
{"title":"用支持向量机和文本处理表示细胞线条","authors":"I. Carrera, I. Dutra, E. Tejera","doi":"10.1145/3388440.3414912","DOIUrl":null,"url":null,"abstract":"A main problem for predicting cell line interactions with chemical compounds is the lack of a computational representation for cell lines. We describe a method for characterizing cell lines from scientific literature. We retrieve and process cell line-related scientific papers, perform a document classification algorithm, and then obtain a description of the information space of each cell line. We have successfully characterized a set of 300+ cell lines.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representing Cellular Lines with SVM and Text Processing\",\"authors\":\"I. Carrera, I. Dutra, E. Tejera\",\"doi\":\"10.1145/3388440.3414912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A main problem for predicting cell line interactions with chemical compounds is the lack of a computational representation for cell lines. We describe a method for characterizing cell lines from scientific literature. We retrieve and process cell line-related scientific papers, perform a document classification algorithm, and then obtain a description of the information space of each cell line. We have successfully characterized a set of 300+ cell lines.\",\"PeriodicalId\":411338,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388440.3414912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3414912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测细胞系与化合物相互作用的一个主要问题是缺乏细胞系的计算表示。我们从科学文献中描述了一种表征细胞系的方法。我们检索和处理与细胞系相关的科学论文,执行文档分类算法,然后获得每个细胞系的信息空间描述。我们已经成功地鉴定了一组300多个细胞系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representing Cellular Lines with SVM and Text Processing
A main problem for predicting cell line interactions with chemical compounds is the lack of a computational representation for cell lines. We describe a method for characterizing cell lines from scientific literature. We retrieve and process cell line-related scientific papers, perform a document classification algorithm, and then obtain a description of the information space of each cell line. We have successfully characterized a set of 300+ cell lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信