描述最后一级缓存替换策略对大数据工作负载的影响

Alexandre Valentin Jamet, Lluc Alvarez, Daniel A. Jiménez, Marc Casas
{"title":"描述最后一级缓存替换策略对大数据工作负载的影响","authors":"Alexandre Valentin Jamet, Lluc Alvarez, Daniel A. Jiménez, Marc Casas","doi":"10.1109/IISWC50251.2020.00022","DOIUrl":null,"url":null,"abstract":"The vast disparity between Last Level Cache (LLC) and memory latencies has motivated the need for efficient cache management policies. The computer architecture literature abounds with work on LLC replacement policy. Although these works greatly improve over the least-recently-used (LRU) policy, they tend to focus only on the SPEC CPU 2006 benchmark suite - and more recently on the SPEC CPU 2017 benchmark suite - for evaluation. However, these workloads are representative for only a subset of current High-Performance Computing (HPC) workloads. In this paper we evaluate the behavior of a mix of graph processing, scientific and industrial workloads (GAP, XSBench and Qualcomm) along with the well-known SPEC CPU 2006 and SPEC CPU 2017 workloads on state-of-the-art LLC replacement policies such as Multiperspective Reuse Prediction (MPPPB), Glider, Hawkeye, SHiP, DRRIP and SRRIP. Our evaluation reveals that, even though current state-of-the-art LLC replacement policies provide a significant performance improvement over LRU for both SPEC CPU 2006 and SPEC CPU 2017 workloads, those policies are hardly able to capture the access patterns and yield sensible improvement on current HPC and big data workloads due to their highly complex behavior. In addition, this paper introduces two new LLC replacement policies derived from MPPPB. The first proposed replacement policy, Multi-Sampler Multiperspective (MS-MPPPB), uses multiple samplers instead of a single one and dynamically selects the best-behaving sampler to drive reuse distance predictions. The second replacement policy presented in this paper, Multiperspective with Dynamic Features Selector (DS-MPPPB), selects the best behaving features among a set of 64 features to improve the accuracy of the predictions. On a large set of workloads that stress the LLC, MS-MPPPB achieves a geometric mean speed-up of 8.3% over LRU, while DS-MPPPB outperforms LRU by a geometric mean speedup of 8.0%. For big data and HPC workloads, the two proposed techniques present higher performance benefits than state-of-the-art approaches such as MPPPB, Glider and Hawkeye, which yield geometric mean speedups of 7.0%, 5.0% and 4.8% over LRU, respectively.","PeriodicalId":365983,"journal":{"name":"2020 IEEE International Symposium on Workload Characterization (IISWC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterizing the impact of last-level cache replacement policies on big-data workloads\",\"authors\":\"Alexandre Valentin Jamet, Lluc Alvarez, Daniel A. Jiménez, Marc Casas\",\"doi\":\"10.1109/IISWC50251.2020.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vast disparity between Last Level Cache (LLC) and memory latencies has motivated the need for efficient cache management policies. The computer architecture literature abounds with work on LLC replacement policy. Although these works greatly improve over the least-recently-used (LRU) policy, they tend to focus only on the SPEC CPU 2006 benchmark suite - and more recently on the SPEC CPU 2017 benchmark suite - for evaluation. However, these workloads are representative for only a subset of current High-Performance Computing (HPC) workloads. In this paper we evaluate the behavior of a mix of graph processing, scientific and industrial workloads (GAP, XSBench and Qualcomm) along with the well-known SPEC CPU 2006 and SPEC CPU 2017 workloads on state-of-the-art LLC replacement policies such as Multiperspective Reuse Prediction (MPPPB), Glider, Hawkeye, SHiP, DRRIP and SRRIP. Our evaluation reveals that, even though current state-of-the-art LLC replacement policies provide a significant performance improvement over LRU for both SPEC CPU 2006 and SPEC CPU 2017 workloads, those policies are hardly able to capture the access patterns and yield sensible improvement on current HPC and big data workloads due to their highly complex behavior. In addition, this paper introduces two new LLC replacement policies derived from MPPPB. The first proposed replacement policy, Multi-Sampler Multiperspective (MS-MPPPB), uses multiple samplers instead of a single one and dynamically selects the best-behaving sampler to drive reuse distance predictions. The second replacement policy presented in this paper, Multiperspective with Dynamic Features Selector (DS-MPPPB), selects the best behaving features among a set of 64 features to improve the accuracy of the predictions. On a large set of workloads that stress the LLC, MS-MPPPB achieves a geometric mean speed-up of 8.3% over LRU, while DS-MPPPB outperforms LRU by a geometric mean speedup of 8.0%. For big data and HPC workloads, the two proposed techniques present higher performance benefits than state-of-the-art approaches such as MPPPB, Glider and Hawkeye, which yield geometric mean speedups of 7.0%, 5.0% and 4.8% over LRU, respectively.\",\"PeriodicalId\":365983,\"journal\":{\"name\":\"2020 IEEE International Symposium on Workload Characterization (IISWC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Workload Characterization (IISWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC50251.2020.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC50251.2020.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最后一级缓存(Last Level Cache, LLC)和内存延迟之间的巨大差异促使人们需要高效的缓存管理策略。计算机体系结构文献中有大量关于LLC替换策略的工作。尽管这些工作大大改善了最近最少使用(LRU)策略,但它们往往只关注SPEC CPU 2006基准测试套件-以及最近的SPEC CPU 2017基准测试套件-进行评估。但是,这些工作负载仅代表当前高性能计算(HPC)工作负载的一个子集。在本文中,我们评估了图形处理、科学和工业工作负载(GAP、XSBench和高通)以及著名的SPEC CPU 2006和SPEC CPU 2017工作负载在最先进的LLC替换策略(如多视角重用预测(MPPPB)、Glider、Hawkeye、SHiP、DRRIP和SRRIP)上的混合行为。我们的评估显示,尽管当前最先进的LLC替换策略为SPEC CPU 2006和SPEC CPU 2017工作负载提供了比LRU显著的性能改进,但由于其高度复杂的行为,这些策略几乎无法捕获访问模式并对当前HPC和大数据工作负载产生显着的改进。此外,本文还介绍了由MPPPB衍生出的两种新的有限责任公司置换政策。第一个被提出的替换策略,Multi-Sampler Multiperspective (MS-MPPPB),使用多个采样器而不是单个采样器,并动态选择行为最佳的采样器来驱动重用距离预测。本文提出的第二种替换策略,multi - perspective with Dynamic Features Selector (DS-MPPPB),从64个特征中选择表现最好的特征来提高预测的准确性。在对LLC施加压力的大量工作负载上,MS-MPPPB的几何平均加速比LRU高8.3%,而DS-MPPPB的几何平均加速比LRU高8.0%。对于大数据和高性能计算工作负载,这两种技术比MPPPB、Glider和Hawkeye等最先进的方法具有更高的性能优势,后者的几何平均速度分别比LRU提高7.0%、5.0%和4.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing the impact of last-level cache replacement policies on big-data workloads
The vast disparity between Last Level Cache (LLC) and memory latencies has motivated the need for efficient cache management policies. The computer architecture literature abounds with work on LLC replacement policy. Although these works greatly improve over the least-recently-used (LRU) policy, they tend to focus only on the SPEC CPU 2006 benchmark suite - and more recently on the SPEC CPU 2017 benchmark suite - for evaluation. However, these workloads are representative for only a subset of current High-Performance Computing (HPC) workloads. In this paper we evaluate the behavior of a mix of graph processing, scientific and industrial workloads (GAP, XSBench and Qualcomm) along with the well-known SPEC CPU 2006 and SPEC CPU 2017 workloads on state-of-the-art LLC replacement policies such as Multiperspective Reuse Prediction (MPPPB), Glider, Hawkeye, SHiP, DRRIP and SRRIP. Our evaluation reveals that, even though current state-of-the-art LLC replacement policies provide a significant performance improvement over LRU for both SPEC CPU 2006 and SPEC CPU 2017 workloads, those policies are hardly able to capture the access patterns and yield sensible improvement on current HPC and big data workloads due to their highly complex behavior. In addition, this paper introduces two new LLC replacement policies derived from MPPPB. The first proposed replacement policy, Multi-Sampler Multiperspective (MS-MPPPB), uses multiple samplers instead of a single one and dynamically selects the best-behaving sampler to drive reuse distance predictions. The second replacement policy presented in this paper, Multiperspective with Dynamic Features Selector (DS-MPPPB), selects the best behaving features among a set of 64 features to improve the accuracy of the predictions. On a large set of workloads that stress the LLC, MS-MPPPB achieves a geometric mean speed-up of 8.3% over LRU, while DS-MPPPB outperforms LRU by a geometric mean speedup of 8.0%. For big data and HPC workloads, the two proposed techniques present higher performance benefits than state-of-the-art approaches such as MPPPB, Glider and Hawkeye, which yield geometric mean speedups of 7.0%, 5.0% and 4.8% over LRU, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信