建构型理论中的Tennenbaum定理分析

Marc Hermes, Dominik Kirst
{"title":"建构型理论中的Tennenbaum定理分析","authors":"Marc Hermes, Dominik Kirst","doi":"10.4230/LIPIcs.FSCD.2022.9","DOIUrl":null,"url":null,"abstract":"Tennenbaum's theorem states that the only countable model of Peano arithmetic (PA) with computable arithmetical operations is the standard model of natural numbers. In this paper, we use constructive type theory as a framework to revisit, analyze and generalize this result. The chosen framework allows for a synthetic approach to computability theory, exploiting that, externally, all functions definable in constructive type theory can be shown computable. We then build on this viewpoint and furthermore internalize it by assuming a version of Church's thesis, which expresses that any function on natural numbers is representable by a formula in PA. This assumption provides for a conveniently abstract setup to carry out rigorous computability arguments, even in the theorem's mechanization. Concretely, we constructivize several classical proofs and present one inherently constructive rendering of Tennenbaum's theorem, all following arguments from the literature. Concerning the classical proofs in particular, the constructive setting allows us to highlight differences in their assumptions and conclusions which are not visible classically. All versions are accompanied by a unified mechanization in the Coq proof assistant.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Analysis of Tennenbaum's Theorem in Constructive Type Theory\",\"authors\":\"Marc Hermes, Dominik Kirst\",\"doi\":\"10.4230/LIPIcs.FSCD.2022.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tennenbaum's theorem states that the only countable model of Peano arithmetic (PA) with computable arithmetical operations is the standard model of natural numbers. In this paper, we use constructive type theory as a framework to revisit, analyze and generalize this result. The chosen framework allows for a synthetic approach to computability theory, exploiting that, externally, all functions definable in constructive type theory can be shown computable. We then build on this viewpoint and furthermore internalize it by assuming a version of Church's thesis, which expresses that any function on natural numbers is representable by a formula in PA. This assumption provides for a conveniently abstract setup to carry out rigorous computability arguments, even in the theorem's mechanization. Concretely, we constructivize several classical proofs and present one inherently constructive rendering of Tennenbaum's theorem, all following arguments from the literature. Concerning the classical proofs in particular, the constructive setting allows us to highlight differences in their assumptions and conclusions which are not visible classically. All versions are accompanied by a unified mechanization in the Coq proof assistant.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSCD.2022.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2022.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Tennenbaum定理指出,具有可计算算术运算的Peano算术(PA)的唯一可数模型是自然数的标准模型。本文以建构型理论为框架,对这一结果进行了回顾、分析和推广。所选择的框架允许可计算性理论的综合方法,利用,在外部,所有在构造型理论中可定义的函数都可以显示为可计算的。然后,我们建立在这个观点的基础上,并进一步内化它,通过假设丘奇的论文的一个版本,它表示自然数上的任何函数都可以用PA中的公式表示。这个假设提供了一个方便的抽象设置来执行严格的可计算性论证,甚至在定理的机械化中也是如此。具体地说,我们构造了几个经典的证明,并提出了一个固有的建设性的Tennenbaum定理,所有这些都是来自文献的论点。特别是关于经典证明,建设性的设置使我们能够突出他们的假设和结论的差异,这些差异在经典中是不可见的。所有版本都配有统一机械化的Coq打样助手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analysis of Tennenbaum's Theorem in Constructive Type Theory
Tennenbaum's theorem states that the only countable model of Peano arithmetic (PA) with computable arithmetical operations is the standard model of natural numbers. In this paper, we use constructive type theory as a framework to revisit, analyze and generalize this result. The chosen framework allows for a synthetic approach to computability theory, exploiting that, externally, all functions definable in constructive type theory can be shown computable. We then build on this viewpoint and furthermore internalize it by assuming a version of Church's thesis, which expresses that any function on natural numbers is representable by a formula in PA. This assumption provides for a conveniently abstract setup to carry out rigorous computability arguments, even in the theorem's mechanization. Concretely, we constructivize several classical proofs and present one inherently constructive rendering of Tennenbaum's theorem, all following arguments from the literature. Concerning the classical proofs in particular, the constructive setting allows us to highlight differences in their assumptions and conclusions which are not visible classically. All versions are accompanied by a unified mechanization in the Coq proof assistant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信