虚拟力装饰遗传算法优化基站位置

Huan Wang, W. Huangfu, Yunhui Qin, Keping Long
{"title":"虚拟力装饰遗传算法优化基站位置","authors":"Huan Wang, W. Huangfu, Yunhui Qin, Keping Long","doi":"10.1109/WOCC.2019.8770642","DOIUrl":null,"url":null,"abstract":"The base station location optimization is one of the most important issues in cellular networks. A novel genetic algorithm combined with the virtual force decoration to improve coverage performance of cellular networks is proposed. The virtual force decoration modifies the individuals and provides a better direction guide for the gene mutation. Experiences prove the proposed algorithm not only obtains higher coverage rate but also converges faster than the standard genetic algorithms.","PeriodicalId":285172,"journal":{"name":"2019 28th Wireless and Optical Communications Conference (WOCC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Virtual Force-Decorated Genetic Algorithm to Optimize Base Station Locations\",\"authors\":\"Huan Wang, W. Huangfu, Yunhui Qin, Keping Long\",\"doi\":\"10.1109/WOCC.2019.8770642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The base station location optimization is one of the most important issues in cellular networks. A novel genetic algorithm combined with the virtual force decoration to improve coverage performance of cellular networks is proposed. The virtual force decoration modifies the individuals and provides a better direction guide for the gene mutation. Experiences prove the proposed algorithm not only obtains higher coverage rate but also converges faster than the standard genetic algorithms.\",\"PeriodicalId\":285172,\"journal\":{\"name\":\"2019 28th Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 28th Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2019.8770642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2019.8770642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基站位置优化是蜂窝网络中最重要的问题之一。提出了一种结合虚拟力装饰的遗传算法来提高蜂窝网络的覆盖性能。虚力修饰修饰了个体,为基因突变提供了更好的方向指导。实践证明,该算法不仅具有较高的覆盖率,而且收敛速度快于标准遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual Force-Decorated Genetic Algorithm to Optimize Base Station Locations
The base station location optimization is one of the most important issues in cellular networks. A novel genetic algorithm combined with the virtual force decoration to improve coverage performance of cellular networks is proposed. The virtual force decoration modifies the individuals and provides a better direction guide for the gene mutation. Experiences prove the proposed algorithm not only obtains higher coverage rate but also converges faster than the standard genetic algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信