模拟摩擦的变分不等式的渐近解

S. Nazarov
{"title":"模拟摩擦的变分不等式的渐近解","authors":"S. Nazarov","doi":"10.1070/IM1991V037N02ABEH002067","DOIUrl":null,"url":null,"abstract":"The problem of minimizing the nondifferentiable functional is considered. An asymptotic solution of the corresponding variational inequality is constructed and justified under the assumption that or is a small parameter. Also, formal asymptotic representations are obtained for singular surfaces which characterize a change in the type of boundary conditions. For a modification of the Vishik-Lyusternik method is used, and exponential boundary layers arise. If , then the boundary layer has only power growth; the principal term of the asymptotic expansion of the solution of the problem in a multidimensional region and the complete asymptotic expansion for the case are obtained.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ASYMPTOTIC SOLUTION OF A VARIATIONAL INEQUALITY MODELING FRICTION\",\"authors\":\"S. Nazarov\",\"doi\":\"10.1070/IM1991V037N02ABEH002067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of minimizing the nondifferentiable functional is considered. An asymptotic solution of the corresponding variational inequality is constructed and justified under the assumption that or is a small parameter. Also, formal asymptotic representations are obtained for singular surfaces which characterize a change in the type of boundary conditions. For a modification of the Vishik-Lyusternik method is used, and exponential boundary layers arise. If , then the boundary layer has only power growth; the principal term of the asymptotic expansion of the solution of the problem in a multidimensional region and the complete asymptotic expansion for the case are obtained.\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1991V037N02ABEH002067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1991V037N02ABEH002067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了不可微泛函的最小化问题。在假设或为小参数的条件下,构造了相应变分不等式的渐近解并证明了其合理性。此外,对于具有边界条件类型变化特征的奇异曲面,也得到了形式渐近表示。对Vishik-Lyusternik方法进行了改进,得到了指数边界层。如果,则边界层只有功率增长;得到了该问题在多维区域解的渐近展开式的主项和该情况的完全渐近展开式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASYMPTOTIC SOLUTION OF A VARIATIONAL INEQUALITY MODELING FRICTION
The problem of minimizing the nondifferentiable functional is considered. An asymptotic solution of the corresponding variational inequality is constructed and justified under the assumption that or is a small parameter. Also, formal asymptotic representations are obtained for singular surfaces which characterize a change in the type of boundary conditions. For a modification of the Vishik-Lyusternik method is used, and exponential boundary layers arise. If , then the boundary layer has only power growth; the principal term of the asymptotic expansion of the solution of the problem in a multidimensional region and the complete asymptotic expansion for the case are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信