微尺度热生物传感器:关键设计考虑和优化

V. Kopparthy, N. Crews
{"title":"微尺度热生物传感器:关键设计考虑和优化","authors":"V. Kopparthy, N. Crews","doi":"10.1109/SBEC.2016.36","DOIUrl":null,"url":null,"abstract":"Calorimetric biosensors have been used for detecting various bioprocesses such as enzyme-substrate activity, protein binding activity, DNA reactions and cell metabolism. The majority of the microcalorimeter applications were proof-of-concept in nature, but having a strong potential for development for actual clinical, scientific, or commercial need. Success of these emerging experimental methodologies will be determined by such factors as the sensitivity and speed of these analyses when compared with existing technologies. These performance metrics are fundamentally related to the thermal transport through the microsystems. In this study, we present the design and fabrication of a microcalorimeter. We also characterize the impact of flow velocity affecting the thermal time constant of the microcalorimeter, steady state response of the system, and the location of the sensor in the flow stream and provide essential guidelines for the optimization of single-stream thermopile systems. The calorimeter consists of a 100μm Y-shaped channel microfluidic device, which is made by sandwiching a microscope glass slide, Kapton tape cut in the form of channel and a microscope glass coverslip, and a bismuth (Bi)antimony (Sb) thin film thermopile (Seebeck coefficient of 5.95 mV/K) integrated on the outer wall of the microscope glass coverslip. The performance of the microcalorimeter was characterized by measuring the heat released during the mixing reaction between water and ethanol. The ratio of flow rates is adjusted to change the location of the reaction zone relative to the measuring or reference junctions of the thermopile. Results indicate as the flow velocity increases the time constant to reach steady state response is decreased.","PeriodicalId":196856,"journal":{"name":"2016 32nd Southern Biomedical Engineering Conference (SBEC)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Microscale Thermal Biosensor: Critical Design Considerations and Optimization\",\"authors\":\"V. Kopparthy, N. Crews\",\"doi\":\"10.1109/SBEC.2016.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calorimetric biosensors have been used for detecting various bioprocesses such as enzyme-substrate activity, protein binding activity, DNA reactions and cell metabolism. The majority of the microcalorimeter applications were proof-of-concept in nature, but having a strong potential for development for actual clinical, scientific, or commercial need. Success of these emerging experimental methodologies will be determined by such factors as the sensitivity and speed of these analyses when compared with existing technologies. These performance metrics are fundamentally related to the thermal transport through the microsystems. In this study, we present the design and fabrication of a microcalorimeter. We also characterize the impact of flow velocity affecting the thermal time constant of the microcalorimeter, steady state response of the system, and the location of the sensor in the flow stream and provide essential guidelines for the optimization of single-stream thermopile systems. The calorimeter consists of a 100μm Y-shaped channel microfluidic device, which is made by sandwiching a microscope glass slide, Kapton tape cut in the form of channel and a microscope glass coverslip, and a bismuth (Bi)antimony (Sb) thin film thermopile (Seebeck coefficient of 5.95 mV/K) integrated on the outer wall of the microscope glass coverslip. The performance of the microcalorimeter was characterized by measuring the heat released during the mixing reaction between water and ethanol. The ratio of flow rates is adjusted to change the location of the reaction zone relative to the measuring or reference junctions of the thermopile. Results indicate as the flow velocity increases the time constant to reach steady state response is decreased.\",\"PeriodicalId\":196856,\"journal\":{\"name\":\"2016 32nd Southern Biomedical Engineering Conference (SBEC)\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 32nd Southern Biomedical Engineering Conference (SBEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBEC.2016.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 32nd Southern Biomedical Engineering Conference (SBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBEC.2016.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

量热生物传感器已被用于检测各种生物过程,如酶-底物活性、蛋白质结合活性、DNA反应和细胞代谢。大多数微热量计的应用本质上是概念验证,但在实际临床、科学或商业需求方面具有很强的发展潜力。这些新兴实验方法的成功将取决于这些分析与现有技术相比的灵敏度和速度等因素。这些性能指标从根本上与通过微系统的热传输有关。在这项研究中,我们提出了一个微热量计的设计和制造。我们还描述了流速对微热量计的热时间常数、系统的稳态响应以及传感器在流中的位置的影响,并为单流热电堆系统的优化提供了重要的指导。该量热计由一个100μm的y型通道微流控装置组成,该微流控装置由显微镜玻璃载玻片、沟道形状的卡普顿胶带和显微镜玻璃盖盖夹在一起,并在显微镜玻璃盖盖外壁上集成了一个铋(Bi)锑(Sb)薄膜热电堆(塞贝克系数为5.95 mV/K)。通过测量水与乙醇混合反应放出的热量来表征微量热计的性能。调节流量的比率,以改变相对于热电堆的测量或参考结的反应区位置。结果表明,随着流速的增大,达到稳态响应的时间常数减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microscale Thermal Biosensor: Critical Design Considerations and Optimization
Calorimetric biosensors have been used for detecting various bioprocesses such as enzyme-substrate activity, protein binding activity, DNA reactions and cell metabolism. The majority of the microcalorimeter applications were proof-of-concept in nature, but having a strong potential for development for actual clinical, scientific, or commercial need. Success of these emerging experimental methodologies will be determined by such factors as the sensitivity and speed of these analyses when compared with existing technologies. These performance metrics are fundamentally related to the thermal transport through the microsystems. In this study, we present the design and fabrication of a microcalorimeter. We also characterize the impact of flow velocity affecting the thermal time constant of the microcalorimeter, steady state response of the system, and the location of the sensor in the flow stream and provide essential guidelines for the optimization of single-stream thermopile systems. The calorimeter consists of a 100μm Y-shaped channel microfluidic device, which is made by sandwiching a microscope glass slide, Kapton tape cut in the form of channel and a microscope glass coverslip, and a bismuth (Bi)antimony (Sb) thin film thermopile (Seebeck coefficient of 5.95 mV/K) integrated on the outer wall of the microscope glass coverslip. The performance of the microcalorimeter was characterized by measuring the heat released during the mixing reaction between water and ethanol. The ratio of flow rates is adjusted to change the location of the reaction zone relative to the measuring or reference junctions of the thermopile. Results indicate as the flow velocity increases the time constant to reach steady state response is decreased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信