扰动Stackelberg对策开环平衡点的存在性

T. Perdicoulis, G. Jank, P. Santos
{"title":"扰动Stackelberg对策开环平衡点的存在性","authors":"T. Perdicoulis, G. Jank, P. Santos","doi":"10.5772/intechopen.92202","DOIUrl":null,"url":null,"abstract":"In this work, we derive necessary and sufficient conditions for the existence of an hierarchic equilibrium of a disturbed two player linear quadratic game with open loop information structure. A convexity condition guarantees the existence of a unique Stackelberg equilibria; this solution is first obtained in terms of a pair of symmetric Riccati equations and also in terms of a coupled of system of Riccati equations. In this latter case, the obtained equilibrium controls are of feedback type.","PeriodicalId":378633,"journal":{"name":"Systems of Systems - Engineering, Modeling, Simulation and Analysis [Working Title]","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of Open Loop Equilibria for Disturbed Stackelberg Games\",\"authors\":\"T. Perdicoulis, G. Jank, P. Santos\",\"doi\":\"10.5772/intechopen.92202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we derive necessary and sufficient conditions for the existence of an hierarchic equilibrium of a disturbed two player linear quadratic game with open loop information structure. A convexity condition guarantees the existence of a unique Stackelberg equilibria; this solution is first obtained in terms of a pair of symmetric Riccati equations and also in terms of a coupled of system of Riccati equations. In this latter case, the obtained equilibrium controls are of feedback type.\",\"PeriodicalId\":378633,\"journal\":{\"name\":\"Systems of Systems - Engineering, Modeling, Simulation and Analysis [Working Title]\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems of Systems - Engineering, Modeling, Simulation and Analysis [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.92202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems of Systems - Engineering, Modeling, Simulation and Analysis [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了一类具有开环信息结构的扰动二人线性二次对策存在层次均衡的充分必要条件。一个凸性条件保证了唯一Stackelberg平衡点的存在;首先用一对对称的里卡第方程和一个耦合的里卡第方程组的形式得到了这个解。在后一种情况下,得到的平衡控制是反馈型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Open Loop Equilibria for Disturbed Stackelberg Games
In this work, we derive necessary and sufficient conditions for the existence of an hierarchic equilibrium of a disturbed two player linear quadratic game with open loop information structure. A convexity condition guarantees the existence of a unique Stackelberg equilibria; this solution is first obtained in terms of a pair of symmetric Riccati equations and also in terms of a coupled of system of Riccati equations. In this latter case, the obtained equilibrium controls are of feedback type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信