基于事件的能源数据聚类

Kieran R. C. Greer, Y. Bi
{"title":"基于事件的能源数据聚类","authors":"Kieran R. C. Greer, Y. Bi","doi":"10.20944/preprints202201.0313.v1","DOIUrl":null,"url":null,"abstract":"This paper describes a stochastic clustering architecture that is used in the paper for making predictions over energy data. The design is discrete, localised optimisations based on similarity, followed by a global aggregating layer, which can be compared with the recent random neural network designs, for example. The topic relates to the IDEAS Smart Home Energy Project, where a client-side Artificial Intelligence component can predict energy consumption for appliances. The proposed data model is essentially a look-up table of the key energy bands that each appliance would use. Each band represents a level of consumption by the appliance. This table can replace disaggregation from more complicated methods, usually constructed from probability theory, for example. Results show that the table can accurately disaggregate a single source to a set of appliances, because each appliance has quite a unique energy footprint. As part of predicting energy consumption, the model could possibly reduce costs by 50% and more than that if the proposed schedules are also included. The hyper-grid has been changed to consider rows as single units, making it more tractable. A second case study considers wind power patterns, where the grid optimises over the dataset columns in a self-similar way to the rows, allowing for some level of feature analysis.","PeriodicalId":443735,"journal":{"name":"DESIGN, CONSTRUCTION, MAINTENANCE","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-Based Clustering with Energy Data\",\"authors\":\"Kieran R. C. Greer, Y. Bi\",\"doi\":\"10.20944/preprints202201.0313.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a stochastic clustering architecture that is used in the paper for making predictions over energy data. The design is discrete, localised optimisations based on similarity, followed by a global aggregating layer, which can be compared with the recent random neural network designs, for example. The topic relates to the IDEAS Smart Home Energy Project, where a client-side Artificial Intelligence component can predict energy consumption for appliances. The proposed data model is essentially a look-up table of the key energy bands that each appliance would use. Each band represents a level of consumption by the appliance. This table can replace disaggregation from more complicated methods, usually constructed from probability theory, for example. Results show that the table can accurately disaggregate a single source to a set of appliances, because each appliance has quite a unique energy footprint. As part of predicting energy consumption, the model could possibly reduce costs by 50% and more than that if the proposed schedules are also included. The hyper-grid has been changed to consider rows as single units, making it more tractable. A second case study considers wind power patterns, where the grid optimises over the dataset columns in a self-similar way to the rows, allowing for some level of feature analysis.\",\"PeriodicalId\":443735,\"journal\":{\"name\":\"DESIGN, CONSTRUCTION, MAINTENANCE\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DESIGN, CONSTRUCTION, MAINTENANCE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20944/preprints202201.0313.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DESIGN, CONSTRUCTION, MAINTENANCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202201.0313.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种随机聚类体系结构,用于对能源数据进行预测。该设计是离散的,基于相似性的局部优化,然后是一个全局聚合层,可以与最近的随机神经网络设计进行比较。该主题与IDEAS智能家居能源项目有关,其中客户端人工智能组件可以预测家电的能耗。所建议的数据模型本质上是每个设备将使用的关键能带的查找表。每个波段表示设备的消耗水平。这个表可以取代更复杂的方法中的分解,例如,通常是由概率论构造的。结果表明,该表可以准确地将单个源分解为一组设备,因为每个设备都有相当独特的能源足迹。作为预测能源消耗的一部分,该模型可能会将成本降低50%,如果还包括拟议的时间表,则可能会更多。超网格已被更改为将行视为单个单元,使其更易于处理。第二个案例研究考虑了风力发电模式,其中网格以自相似的方式对数据集列进行优化,从而允许某种程度的特征分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-Based Clustering with Energy Data
This paper describes a stochastic clustering architecture that is used in the paper for making predictions over energy data. The design is discrete, localised optimisations based on similarity, followed by a global aggregating layer, which can be compared with the recent random neural network designs, for example. The topic relates to the IDEAS Smart Home Energy Project, where a client-side Artificial Intelligence component can predict energy consumption for appliances. The proposed data model is essentially a look-up table of the key energy bands that each appliance would use. Each band represents a level of consumption by the appliance. This table can replace disaggregation from more complicated methods, usually constructed from probability theory, for example. Results show that the table can accurately disaggregate a single source to a set of appliances, because each appliance has quite a unique energy footprint. As part of predicting energy consumption, the model could possibly reduce costs by 50% and more than that if the proposed schedules are also included. The hyper-grid has been changed to consider rows as single units, making it more tractable. A second case study considers wind power patterns, where the grid optimises over the dataset columns in a self-similar way to the rows, allowing for some level of feature analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信