正递归博弈中的子博弈完美性

J. Flesch, G. Schoenmakers, J. Kuipers, K. Vrieze
{"title":"正递归博弈中的子博弈完美性","authors":"J. Flesch, G. Schoenmakers, J. Kuipers, K. Vrieze","doi":"10.1145/1807406.1807415","DOIUrl":null,"url":null,"abstract":"We consider a class of n-player stochastic games with the following properties: (1) in every state, the transitions are controlled by one player, (2) the payoffs are equal to zero in every non-absorbing state, (3) the payoffs are non-negative in every absorbing state. We propose a new iterative method to analyze these games. With respect to the expected average reward, we prove the existence of a subgame-perfect ε-equilibrium in pure strategies, for every ε > 0. Moreover, if all transitions are deterministic, we obtain a subgame-perfect 0-equilibrium in pure strategies.","PeriodicalId":142982,"journal":{"name":"Behavioral and Quantitative Game Theory","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Subgame-perfection in positive recursive games\",\"authors\":\"J. Flesch, G. Schoenmakers, J. Kuipers, K. Vrieze\",\"doi\":\"10.1145/1807406.1807415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of n-player stochastic games with the following properties: (1) in every state, the transitions are controlled by one player, (2) the payoffs are equal to zero in every non-absorbing state, (3) the payoffs are non-negative in every absorbing state. We propose a new iterative method to analyze these games. With respect to the expected average reward, we prove the existence of a subgame-perfect ε-equilibrium in pure strategies, for every ε > 0. Moreover, if all transitions are deterministic, we obtain a subgame-perfect 0-equilibrium in pure strategies.\",\"PeriodicalId\":142982,\"journal\":{\"name\":\"Behavioral and Quantitative Game Theory\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral and Quantitative Game Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1807406.1807415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Quantitative Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807406.1807415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑一类n人随机博弈,具有以下性质:(1)在每个状态下,过渡由一个参与者控制,(2)在每个非吸收状态下收益等于零,(3)在每个吸收状态下收益非负。我们提出了一种新的迭代方法来分析这些博弈。对于期望平均奖励,我们证明了在纯策略中,对于每一个ε > 0,存在子博弈完美ε-均衡。此外,如果所有的转移都是确定性的,我们得到了纯策略下的子博弈完美0-均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subgame-perfection in positive recursive games
We consider a class of n-player stochastic games with the following properties: (1) in every state, the transitions are controlled by one player, (2) the payoffs are equal to zero in every non-absorbing state, (3) the payoffs are non-negative in every absorbing state. We propose a new iterative method to analyze these games. With respect to the expected average reward, we prove the existence of a subgame-perfect ε-equilibrium in pure strategies, for every ε > 0. Moreover, if all transitions are deterministic, we obtain a subgame-perfect 0-equilibrium in pure strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信