D. Marques, Oliver J. Sheppard, E. Zhang, P. Beard, P. Munro, J. Guggenheim
{"title":"用贝塞尔光束询问法布里-珀罗超声传感器光声成像","authors":"D. Marques, Oliver J. Sheppard, E. Zhang, P. Beard, P. Munro, J. Guggenheim","doi":"10.1117/12.2675686","DOIUrl":null,"url":null,"abstract":"Photoacoustic Tomography (PAT) systems based on Fabry-Perot (FP) sensors provide high-resolution images limited by the system’s sensitivity. The sensitivity is limited by the optical Q-factor of the FP cavity (i.e., the optical confinement of the interrogation laser beam in the FP cavity). In existing systems, a focused Gaussian beam is used to interrogate the sensor. While providing a small acoustic element required for high-resolution imaging, this interrogation beam naturally diverges inside the FP cavity, leading to the current sensitivity limit. To break this limit, a new approach of interrogating the FP sensor using a Bessel beam is investigated. The Noise Equivalent Pressure (NEP) and both axial and lateral PAT resolutions using Bessel beam interrogation were quantified. Bessel beam interrogation provided lower NEP, similar axial resolution, but lower lateral resolution. Thus, Bessel beam might be an alternative interrogation scheme for deep PAT imaging as high sensitivity is needed and the lateral resolution is limited by the aperture of the PAT system.","PeriodicalId":278089,"journal":{"name":"European Conference on Biomedical Optics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interrogating Fabry-Perot ultrasound sensors with Bessel beams for photoacoustic imaging\",\"authors\":\"D. Marques, Oliver J. Sheppard, E. Zhang, P. Beard, P. Munro, J. Guggenheim\",\"doi\":\"10.1117/12.2675686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoacoustic Tomography (PAT) systems based on Fabry-Perot (FP) sensors provide high-resolution images limited by the system’s sensitivity. The sensitivity is limited by the optical Q-factor of the FP cavity (i.e., the optical confinement of the interrogation laser beam in the FP cavity). In existing systems, a focused Gaussian beam is used to interrogate the sensor. While providing a small acoustic element required for high-resolution imaging, this interrogation beam naturally diverges inside the FP cavity, leading to the current sensitivity limit. To break this limit, a new approach of interrogating the FP sensor using a Bessel beam is investigated. The Noise Equivalent Pressure (NEP) and both axial and lateral PAT resolutions using Bessel beam interrogation were quantified. Bessel beam interrogation provided lower NEP, similar axial resolution, but lower lateral resolution. Thus, Bessel beam might be an alternative interrogation scheme for deep PAT imaging as high sensitivity is needed and the lateral resolution is limited by the aperture of the PAT system.\",\"PeriodicalId\":278089,\"journal\":{\"name\":\"European Conference on Biomedical Optics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Biomedical Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2675686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Biomedical Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2675686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interrogating Fabry-Perot ultrasound sensors with Bessel beams for photoacoustic imaging
Photoacoustic Tomography (PAT) systems based on Fabry-Perot (FP) sensors provide high-resolution images limited by the system’s sensitivity. The sensitivity is limited by the optical Q-factor of the FP cavity (i.e., the optical confinement of the interrogation laser beam in the FP cavity). In existing systems, a focused Gaussian beam is used to interrogate the sensor. While providing a small acoustic element required for high-resolution imaging, this interrogation beam naturally diverges inside the FP cavity, leading to the current sensitivity limit. To break this limit, a new approach of interrogating the FP sensor using a Bessel beam is investigated. The Noise Equivalent Pressure (NEP) and both axial and lateral PAT resolutions using Bessel beam interrogation were quantified. Bessel beam interrogation provided lower NEP, similar axial resolution, but lower lateral resolution. Thus, Bessel beam might be an alternative interrogation scheme for deep PAT imaging as high sensitivity is needed and the lateral resolution is limited by the aperture of the PAT system.