漫画书的无分割语音文本识别

Christophe Rigaud, J. Burie, J. Ogier
{"title":"漫画书的无分割语音文本识别","authors":"Christophe Rigaud, J. Burie, J. Ogier","doi":"10.1109/ICDAR.2017.288","DOIUrl":null,"url":null,"abstract":"Speech text in comic books is written in a particular manner by the scriptwriter which raises unusual challenges for text recognition. We first detail these challenges and present different approaches to solve them. We compare the performances of pre-trained OCR and segmentation-free approach for speech text of comic books written in Latin script. We demonstrate that few good quality pre-trained OCR output samples, associated with other unlabeled data with the same writing style, can feed a segmentation-free OCR and improve text recognition. Thanks to the help of the lexicality measure that automatically accept or reject the pretrained OCR output as pseudo ground truth for a subsequent segmentation-free OCR training and recognition.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Segmentation-Free Speech Text Recognition for Comic Books\",\"authors\":\"Christophe Rigaud, J. Burie, J. Ogier\",\"doi\":\"10.1109/ICDAR.2017.288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech text in comic books is written in a particular manner by the scriptwriter which raises unusual challenges for text recognition. We first detail these challenges and present different approaches to solve them. We compare the performances of pre-trained OCR and segmentation-free approach for speech text of comic books written in Latin script. We demonstrate that few good quality pre-trained OCR output samples, associated with other unlabeled data with the same writing style, can feed a segmentation-free OCR and improve text recognition. Thanks to the help of the lexicality measure that automatically accept or reject the pretrained OCR output as pseudo ground truth for a subsequent segmentation-free OCR training and recognition.\",\"PeriodicalId\":433676,\"journal\":{\"name\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2017.288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

漫画书中的语音文本由编剧以特定的方式编写,这给文本识别带来了不同寻常的挑战。我们首先详细介绍这些挑战,并提出解决这些挑战的不同方法。我们比较了预训练OCR和无分割方法对拉丁文字漫画语音文本的性能。我们证明了一些高质量的预训练OCR输出样本,与其他具有相同写作风格的未标记数据相关联,可以提供无分割的OCR并提高文本识别。由于词法度量的帮助,自动接受或拒绝预训练的OCR输出作为后续无分割OCR训练和识别的伪基础事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation-Free Speech Text Recognition for Comic Books
Speech text in comic books is written in a particular manner by the scriptwriter which raises unusual challenges for text recognition. We first detail these challenges and present different approaches to solve them. We compare the performances of pre-trained OCR and segmentation-free approach for speech text of comic books written in Latin script. We demonstrate that few good quality pre-trained OCR output samples, associated with other unlabeled data with the same writing style, can feed a segmentation-free OCR and improve text recognition. Thanks to the help of the lexicality measure that automatically accept or reject the pretrained OCR output as pseudo ground truth for a subsequent segmentation-free OCR training and recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信