平面上像素采样和场景离散化的视点依赖信息理论质量度量

Jaume Rigau, M. Feixas, M. Sbert, P. Bekaert
{"title":"平面上像素采样和场景离散化的视点依赖信息理论质量度量","authors":"Jaume Rigau, M. Feixas, M. Sbert, P. Bekaert","doi":"10.1109/SCCG.2001.945352","DOIUrl":null,"url":null,"abstract":"In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences.","PeriodicalId":331436,"journal":{"name":"Proceedings Spring Conference on Computer Graphics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"View-dependent information theory quality measures for pixel sampling and scene discretization in flatland\",\"authors\":\"Jaume Rigau, M. Feixas, M. Sbert, P. Bekaert\",\"doi\":\"10.1109/SCCG.2001.945352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences.\",\"PeriodicalId\":331436,\"journal\":{\"name\":\"Proceedings Spring Conference on Computer Graphics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Spring Conference on Computer Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCG.2001.945352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Spring Conference on Computer Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCG.2001.945352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了基于视点依赖的信息理论的平面像素采样和场景离散的质量度量。这些措施是基于对一条线的相互信息的定义,并具有纯粹的几何基础。提出了几种利用深度差的算法,并与现有的基于深度差的算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
View-dependent information theory quality measures for pixel sampling and scene discretization in flatland
In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信