基于bert的遥感数据云填充模型

Trong-Nghia Nguyen, Thanh Van Le
{"title":"基于bert的遥感数据云填充模型","authors":"Trong-Nghia Nguyen, Thanh Van Le","doi":"10.1109/NICS56915.2022.10013400","DOIUrl":null,"url":null,"abstract":"Remote Sensing data are commonly used in analysis of geographical characteristic. One of the most frequent problems in Remote Sensing is the loss of data due to cloud-covered pixels. While traditional approaches took inspiration from DINEOF, recent advancements in Deep Learning and Machine Learning prompted a new paradigm to this well-known problem. In this paper, we proposed a Bert-based model for the cloud filling task named RoBERTaCF. Our method is compared to a recent Funk-SVD and our experiments indicated that RoBERTaCF achieved better performance in filling cloud scheme from remote sensing data.","PeriodicalId":381028,"journal":{"name":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A BERT-based Model for Cloud Filling from Remote Sensing Data\",\"authors\":\"Trong-Nghia Nguyen, Thanh Van Le\",\"doi\":\"10.1109/NICS56915.2022.10013400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote Sensing data are commonly used in analysis of geographical characteristic. One of the most frequent problems in Remote Sensing is the loss of data due to cloud-covered pixels. While traditional approaches took inspiration from DINEOF, recent advancements in Deep Learning and Machine Learning prompted a new paradigm to this well-known problem. In this paper, we proposed a Bert-based model for the cloud filling task named RoBERTaCF. Our method is compared to a recent Funk-SVD and our experiments indicated that RoBERTaCF achieved better performance in filling cloud scheme from remote sensing data.\",\"PeriodicalId\":381028,\"journal\":{\"name\":\"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS56915.2022.10013400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS56915.2022.10013400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遥感数据是地理特征分析的常用数据。遥感中最常见的问题之一是由于云覆盖像素而导致数据丢失。虽然传统方法从DINEOF中获得灵感,但深度学习和机器学习的最新进展为这个众所周知的问题提供了新的范例。在本文中,我们提出了一个基于bert的云填充任务模型RoBERTaCF。我们的方法与最近的Funk-SVD进行了比较,实验表明RoBERTaCF在从遥感数据中填充云方案方面取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A BERT-based Model for Cloud Filling from Remote Sensing Data
Remote Sensing data are commonly used in analysis of geographical characteristic. One of the most frequent problems in Remote Sensing is the loss of data due to cloud-covered pixels. While traditional approaches took inspiration from DINEOF, recent advancements in Deep Learning and Machine Learning prompted a new paradigm to this well-known problem. In this paper, we proposed a Bert-based model for the cloud filling task named RoBERTaCF. Our method is compared to a recent Funk-SVD and our experiments indicated that RoBERTaCF achieved better performance in filling cloud scheme from remote sensing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信