Liangjun Zhu, Shuguang Liu, Haifeng Zhu, D. Cooper, D. Yuan, Yu Zhu, Zongshan Li, Yuandong Zhang, Hanxue Liang, Xu Zhang, Wenqi Song, Xiaochun Wang
{"title":"“利用多物种方法克服基于树木年轮的温度重建模式的不稳定性:以长白山为例”的补充材料","authors":"Liangjun Zhu, Shuguang Liu, Haifeng Zhu, D. Cooper, D. Yuan, Yu Zhu, Zongshan Li, Yuandong Zhang, Hanxue Liang, Xu Zhang, Wenqi Song, Xiaochun Wang","doi":"10.5194/CP-2021-2","DOIUrl":null,"url":null,"abstract":"Abstract. The unstable sensitivity of growth-climate relationships greatly restricts tree-ring-based paleoclimate reconstructions, especially in areas with frequent divergence problems, such as the temperate zone in northeast China. Here, we propose an original tree-species mixing method to overcome this obstacle and improve the stability and reliability of reconstruction models. We take the tree-ring based growing-season minimum temperature reconstruction for the northern Changbai Mountains in northeast China as an example to illustrate the method. Compared with previous temperature reconstruction models, our reconstruction model is more stable and reliable and explains up to 68 % of the variance. It is also highly consistent with historical records and tree-ring-based temperature reconstructions from the nearby Xiaoxing'an Mountains and from across the Northern Hemisphere. Our reconstruction uses two different tree species and is more accurate than temperature reconstructions developed from a single species. Over the past 259 years (AD 1757–2015), five significant cold periods and five warm periods were identified. The reconstruction indicates rapid warming since the 1980s, which is consistent with other instrumental and reconstructed records. We also found the Atlantic Multidecadal Oscillation plays a crucial role in driving the growing-season minimum temperature in the northern Changbai Mountains.\n","PeriodicalId":263057,"journal":{"name":"Climate of The Past Discussions","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supplementary material to \\\"Overcoming model instability in tree-ring-based temperature \\nreconstructions using a multi-species method: A case study from the \\nChangbai Mountains, northeastern China\\\"\",\"authors\":\"Liangjun Zhu, Shuguang Liu, Haifeng Zhu, D. Cooper, D. Yuan, Yu Zhu, Zongshan Li, Yuandong Zhang, Hanxue Liang, Xu Zhang, Wenqi Song, Xiaochun Wang\",\"doi\":\"10.5194/CP-2021-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The unstable sensitivity of growth-climate relationships greatly restricts tree-ring-based paleoclimate reconstructions, especially in areas with frequent divergence problems, such as the temperate zone in northeast China. Here, we propose an original tree-species mixing method to overcome this obstacle and improve the stability and reliability of reconstruction models. We take the tree-ring based growing-season minimum temperature reconstruction for the northern Changbai Mountains in northeast China as an example to illustrate the method. Compared with previous temperature reconstruction models, our reconstruction model is more stable and reliable and explains up to 68 % of the variance. It is also highly consistent with historical records and tree-ring-based temperature reconstructions from the nearby Xiaoxing'an Mountains and from across the Northern Hemisphere. Our reconstruction uses two different tree species and is more accurate than temperature reconstructions developed from a single species. Over the past 259 years (AD 1757–2015), five significant cold periods and five warm periods were identified. The reconstruction indicates rapid warming since the 1980s, which is consistent with other instrumental and reconstructed records. We also found the Atlantic Multidecadal Oscillation plays a crucial role in driving the growing-season minimum temperature in the northern Changbai Mountains.\\n\",\"PeriodicalId\":263057,\"journal\":{\"name\":\"Climate of The Past Discussions\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate of The Past Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/CP-2021-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/CP-2021-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supplementary material to "Overcoming model instability in tree-ring-based temperature
reconstructions using a multi-species method: A case study from the
Changbai Mountains, northeastern China"
Abstract. The unstable sensitivity of growth-climate relationships greatly restricts tree-ring-based paleoclimate reconstructions, especially in areas with frequent divergence problems, such as the temperate zone in northeast China. Here, we propose an original tree-species mixing method to overcome this obstacle and improve the stability and reliability of reconstruction models. We take the tree-ring based growing-season minimum temperature reconstruction for the northern Changbai Mountains in northeast China as an example to illustrate the method. Compared with previous temperature reconstruction models, our reconstruction model is more stable and reliable and explains up to 68 % of the variance. It is also highly consistent with historical records and tree-ring-based temperature reconstructions from the nearby Xiaoxing'an Mountains and from across the Northern Hemisphere. Our reconstruction uses two different tree species and is more accurate than temperature reconstructions developed from a single species. Over the past 259 years (AD 1757–2015), five significant cold periods and five warm periods were identified. The reconstruction indicates rapid warming since the 1980s, which is consistent with other instrumental and reconstructed records. We also found the Atlantic Multidecadal Oscillation plays a crucial role in driving the growing-season minimum temperature in the northern Changbai Mountains.